In Vitro TyRP-1 Knockdown Based on siRNA Carried by Liquid Crystalline Nanodispersions: an Alternative Approach for Topical Treatment of Vitiligo

  • Larissa Bueno Tofani
  • Lívia Vieira Depieri
  • Patrícia Mazureki Campos
  • Thalita Bachelli Riul
  • Kamilla Swiech Antonietto
  • Márcia Carvalho de Abreu Fantini
  • Maria Vitória Lopes Badra Bentley
Research Paper



Vitiligo is a skin disease characterized by depigmentation and the presence of white patches that are associated with the loss of melanocytes. The most common explanation for the cause of this condition is that it is an autoimmune condition. TyRP-1 is involved in melanin pigment synthesis but can also function as a melanocyte differentiation antigen. This protein plays a role in the autoimmune destruction of melanocytes, which results in the depigmentation, characteristic of this disease. In this study, we evaluated liquid crystalline nanodispersions as non-viral vectors to deliver siRNA-TyRP-1 as an alternative for topical treatment of vitiligo.


Liquid crystalline nanodispersions were obtained and characterized with respect to their physical-chemical parameters including size, PdI and zeta potential, as well as Small Angle X-ray Scattering and complexing to siRNA. The effects of the liquid crystalline nanodispersions on the cellular viability, cell uptake and levels of the knockdown target TyRP-1 were evaluated in melan-A cells after 24 h of treatment.


The liquid crystalline nanodispersions demonstrated adequate physical-chemical parameters including nanometer size and a PdI below 0.38. These systems promoted a high rate of cell uptake and an impressive TyRP-1 target knockdown (> 80%) associated with suitable loading of TyRp-1 siRNA.


We demonstrated that the liquid crystalline nanodispersions showed promising alternative for the topical treatment of vitiligo due to their physical parameters and ability in knockdown the target protein involved with autoimmune destruction of melanocytes.


in vitro knockdown liquid crystalline nanodispersions siRNA TyRP-1 vitiligo 



We thank José Orestes Del Ciampo for technical assistance in the DLS analyses. We also thank Camila Cristina de Oliveira Menezes Bonaldo, Laboratory of Flow Cytometry, Blood Regional Center-FMRP-USP, Ribeirão Preto, São Paulo, Brazil, for the assistance with the flow cytometry. Thanks are due to LNLS, Brazil for the use of the D02A-SAXS2 beamline. The melan-A non-tumorigenic melanocyte cell line was kindly provided by Dr. Marcelo Dias Baruffi from School of Pharmaceutical Science of Ribeirao Preto, University Sao Paulo, Sao Paulo, Brazil. Part of this work was developed within the framework of National Institute of Science and Technology of Pharmaceutical Nanotechnology (INCT-Nanofarma), which is supported by “Fundação de Amparo à Pesquisa do Estado de São Paulo” (Fapesp, Brazil, grant #2014/50928-2) and “Conselho Nacional de Pesquisa” (CNPQ, Brazil, grant #465687/2014-8). L.B. Tofani was the recipient of a CNPq fellowship (grant 133839/2013-3) and a FAPESP fellowship (grant # 2013/06559-0).


  1. 1.
    Deng Y, Wang CC, Choy KW, Du Q, Chen J, Wang Q, et al. Therapeutic potentials of gene silencing by RNA interference: principles, challenges, and new strategies. Gene. 2014;538(2):217–27.CrossRefPubMedGoogle Scholar
  2. 2.
    Ndong Ntoutoume GM, Grassot V, Bregier F, Chabanais J, Petit JM, Granet R, et al. PEI-cellulose nanocrystal hybrids as efficient siRNA delivery agents-Synthesis, physicochemical characterization and in vitro evaluation. Carbohydr Polym. 2017;164:258–67.CrossRefPubMedGoogle Scholar
  3. 3.
    Han J, Cai J, Borjihan W, Ganbold T, Rana TM, Baigude H. Preparation of novel curdlan nanoparticles for intracellular siRNA delivery. Carbohydr Polym. 2015;117:324–30.CrossRefPubMedGoogle Scholar
  4. 4.
    Sardo C, Farra R, Licciardi M, Dapas B, Scialabba C, Giammona G, et al. Development of a simple, biocompatible and cost-effective Inulin-Diethylenetriamine based siRNA delivery system. Eur J Pharm Sci Off J Eur Fed Pharm Sci. 2015;75:60–71.Google Scholar
  5. 5.
    Huo H, Gao Y, Wang Y, Zhang J, Wang ZY, Jiang T, et al. Polyion complex micelles composed of pegylated polyasparthydrazide derivatives for siRNA delivery to the brain. J Colloid Interface Sci. 2015;447:8–15.CrossRefPubMedGoogle Scholar
  6. 6.
    Zhu H, Zhang S, Ling Y, Meng G, Yang Y, Zhang W. pH-responsive hybrid quantum dots for targeting hypoxic tumor siRNA delivery. J Control Release Off J Control Release Soc. 2015;220(Pt A):529–44.CrossRefGoogle Scholar
  7. 7.
    Chen Y, Gu H, Zhang DS, Li F, Liu T, Xia W. Highly effective inhibition of lung cancer growth and metastasis by systemic delivery of siRNA via multimodal mesoporous silica-based nanocarrier. Biomaterials. 2014;35(38):10058–69.CrossRefPubMedGoogle Scholar
  8. 8.
    Liang Y, Liu Z, Shuai X, Wang W, Liu J, Bi W, et al. Delivery of cationic polymer-siRNA nanoparticles for gene therapies in neural regeneration. Biochem Biophys Res Commun. 2012;421(4):690–5.CrossRefPubMedGoogle Scholar
  9. 9.
    Guo J, O'Driscoll CM, Holmes JD, Rahme K. Bioconjugated gold nanoparticles enhance cellular uptake: a proof of concept study for siRNA delivery in prostate cancer cells. Int J Pharm. 2016;509(1–2):16–27.CrossRefPubMedGoogle Scholar
  10. 10.
    Darvishi MH, Nomani A, Amini M, Shokrgozar MA, Dinarvand R. Novel biotinylated chitosan-graft-polyethyleneimine copolymer as a targeted non-viral vector for anti-EGF receptor siRNA delivery in cancer cells. Int J Pharm. 2013;456(2):408–16.CrossRefPubMedGoogle Scholar
  11. 11.
    Guo CY, Wang J, Cao FL, Lee RJ, Zhai GX. Lyotropic liquid crystal systems in drug delivery. Drug Discov Today. 2010;15(23–24):1032–40.CrossRefPubMedGoogle Scholar
  12. 12.
    Petrilli R, Eloy JO, Praça FSG, Ciampo JOD, Fantini MAC, Fonseca MJV, et al. Liquid crystalline nanodispersions functionalized with cell-penetrating peptides for topical delivery of short-interfering RNAs: a proposal for silencing a pro-inflammatory cytokine in cutaneous diseases. J Biomed Nanotechnol. 2016;12(5):1063–75.CrossRefPubMedGoogle Scholar
  13. 13.
    Depieri LV, Borgheti-Cardoso LN, Campos PM, Otaguiri KK, Vicentini FT, Lopes LB, et al. RNAi mediated IL-6 in vitro knockdown in psoriasis skin model with topical siRNA delivery system based on liquid crystalline phase. Eur J Pharm Biopharm. 2016;105:50–8.CrossRefPubMedGoogle Scholar
  14. 14.
    Avachat AM, Parpani SS. Formulation and development of bicontinuous nanostructured liquid crystalline particles of efavirenz. Colloids Surf B: Biointerfaces. 2015;126:87–97.CrossRefPubMedGoogle Scholar
  15. 15.
    Vicentini FTMD, Depieri LV, Polizello ACM, Del Ciampo JO, Spadaro ACC, Fantini MCA, et al. Liquid crystalline phase nanodispersions enable skin delivery of siRNA. Eur J Pharm Biopharm. 2013;83(1):16–24.CrossRefPubMedGoogle Scholar
  16. 16.
    Siu KS, Chen D, Zheng XF, Zhang XS, Johnston N, Liu YL, et al. Non-covalently functionalized single-walled carbon nanotube for topical siRNA delivery into melanoma. Biomaterials. 2014;35(10):3435–42.CrossRefPubMedGoogle Scholar
  17. 17.
    Li J, Wu L, WJ W, Wang BY, Wang ZY, Xin HL, et al. potential carrier based on liquid crystal nanoparticles for ophthalmic delivery of pilocarpine nitrate. Int J Pharm. 2013;455(1–2):75–84.CrossRefPubMedGoogle Scholar
  18. 18.
    Rossetti FC, Depieri LV, Praca FG, Del Ciampo JO, Fantini MCA, Pierre MBR, et al. Optimization of protoporphyrin IX skin delivery for topical photodynamic therapy: nanodispersions of liquid-crystalline phase as nanocarriers. Eur J Pharm Sci. 2016;83:99–108.CrossRefPubMedGoogle Scholar
  19. 19.
    Lopes LB, Ferreira DA, de Paula D, Garcia MTJ, Thomazini JA, Fantini MCA, et al. Reverse hexagonal phase nanodispersion of monoolein and oleic acid for topical delivery of peptides: in vitro and in vivo skin penetration of cyclosporin A. Pharm Res. 2006;23(6):1332–42.CrossRefPubMedGoogle Scholar
  20. 20.
    Chen YJ, Chen YY, CY W, Chi CC. Oral Chinese herbal medicine in combination with phototherapy for vitiligo: a systematic review and meta-analysis of randomized controlled trials. Complement Ther Med. 2016;26:21–7.CrossRefPubMedGoogle Scholar
  21. 21.
    Gong QL, Li X, Sun J, Ding GZ, Zhou MH, Zhao WN, et al. The effects of calcipotriol on the dendritic morphology of human melanocytes under oxidative stress and a possible mechanism: Is it a mitochondrial protector? J Dermatol Sci. 2015;77(2):117–24.CrossRefPubMedGoogle Scholar
  22. 22.
    Pei TL, Zheng CL, Huang C, Chen XT, Guo ZH, YX F, et al. Systematic understanding the mechanisms of vitiligo pathogenesis and its treatment by Qubaibabuqi formula. J Ethnopharmacol. 2016;190:272–87.CrossRefPubMedGoogle Scholar
  23. 23.
    Iannella G, Greco A, Didona D, Didona B, Granata G, Manno A, et al. vitiligo: Pathogenesis, clinical variants and treatment approaches. Autoimmun Rev. 2016;15(4):335–43.CrossRefPubMedGoogle Scholar
  24. 24.
    Gill L, Zarbo A, Isedeh P, Jacobsen G, Lim HW, Hamzavi I. Comorbid autoimmune diseases in patients with vitiligo: a cross-sectional study. J Am Acad Dermatol. 2016;74(2):295–302.CrossRefPubMedGoogle Scholar
  25. 25.
    Oiso N, Suzuki T, Wataya-Kaneda M, Tanemura A, Tanioka M, Fujimoto T, et al. Guidelines for the diagnosis and treatment of vitiligo in Japan. J Dermatol. 2013;40(5):344–54.CrossRefPubMedGoogle Scholar
  26. 26.
    Ghanem G, Fabrice J. Tyrosinase related protein 1 (TYRP1/gp75) in human cutaneous melanoma. Mol Oncol. 2011;5(2):150–5.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Rausch MP, Irvine KR, Antony PA, Restifo NP, Cresswell P, Hastings KT. GILT accelerates autoimmunity to the melanoma antigen tyrosinase-related protein 1. J Immunol. 2010;185(5):2828–35.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Jimbow K, Chen H, Park JS, Thomas PD. Increased sensitivity of melanocytes to oxidative stress and abnormal expression of tyrosinase-related protein in vitiligo. Br J Dermatol. 2001;144(1):55–65.CrossRefPubMedGoogle Scholar
  29. 29.
    Essien KI, Harris JE. Animal models of vitiligo: matching the model to the question. Dermatol Sin. 2014;32(4):240–7.CrossRefGoogle Scholar
  30. 30.
    Trcka J, Moroi Y, Clynes RA, Goldberg SM, Bergtold A, Perales MA, et al. Redundant and alternative roles for activating Fc receptors and complement in an antibody-dependent model of autoimmune vitiligo. Immunity. 2002;16(6):861–8.CrossRefPubMedGoogle Scholar
  31. 31.
    Tran MA, Gowda R, Sharma A, Park EJ, Adair J, Kester M, et al. Targeting V600EB-Raf and Akt3 using nanoliposomal-small interfering RNA inhibits cutaneous melanocytic lesion development. Cancer Res. 2008;68(18):7638–49.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Qi R, Liu S, Chen J, Xiao H, Yan L, Huang Y, et al. Biodegradable copolymers with identical cationic segments and their performance in siRNA delivery. J Control Release Off J Control Release Soc. 2012;159(2):251–60.CrossRefGoogle Scholar
  33. 33.
    Brunner T, Cohen S, Monsonego A. Silencing of proinflammatory genes targeted to peritoneal-residing macrophages using siRNA encapsulated in biodegradable microspheres. Biomaterials. 2010;31(9):2627–36.CrossRefPubMedGoogle Scholar
  34. 34.
    Melo FH, Molognoni F, Morais AS, Toricelli M, Mouro MG, Higa EM, et al. Endothelial nitric oxide synthase uncoupling as a key mediator of melanocyte malignant transformation associated with sustained stress conditions. Free Radic Biol Med. 2011;50(10):1263–73.CrossRefPubMedGoogle Scholar
  35. 35.
    Kesharwani P, Gajbhiye V, Jain NK. A review of nanocarriers for the delivery of small interfering RNA. Biomaterials. 2012;33(29):7138–50.CrossRefPubMedGoogle Scholar
  36. 36.
    Borgheti-Cardoso LN, Depieri LV, Kooijmans SA, Diniz H, Calzzani RA, Vicentini FT, et al. An in situ gelling liquid crystalline system based on monoglycerides and polyethylenimine for local delivery of siRNAs. Eur J Pharm Sci Off J Eur Fed Pharm Sci. 2015;74:103–17.Google Scholar
  37. 37.
    Chen M, Zakrewsky M, Gupta V, Anselmo AC, Slee DH, Muraski JA, et al. Topical delivery of siRNA into skin using SPACE-peptide carriers. J Control Release Off J Control Release Soc. 2014;179:33–41.CrossRefGoogle Scholar
  38. 38.
    Milak S, Zimmer A. Glycerol monooleate liquid crystalline phases used in drug delivery systems. Int J Pharm. 2015;478(2):569–87.CrossRefPubMedGoogle Scholar
  39. 39.
    Phan S, Fong WK, Kirby N, Hanley T, Boyd BJ. Evaluating the link between self-assembled mesophase structure and drug release. Int J Pharm. 2011;421(1):176–82.CrossRefPubMedGoogle Scholar
  40. 40.
    Fong C, Le T, Drummond CJ. Lyotropic liquid crystal engineering-ordered nanostructured small molecule amphiphile self-assembly materials by design. Chem Soc Rev. 2012;41(3):1297–322.CrossRefPubMedGoogle Scholar
  41. 41.
    Amar-Yuli I, Wachtel E, Shoshan EB, Danino D, Aserin A, Garti N. Hexosome and hexagonal phases mediated by hydration and polymeric stabilizer. Langmuir ACS J Surf Colloids. 2007;23(7):3637–45.CrossRefGoogle Scholar
  42. 42.
    Souza C, Watanabe E, Borgheti-Cardoso LN, Fantini MCD, Lara MG. Mucoadhesive system formed by liquid crystals for buccal administration of poly(hexamethylene biguanide) hydrochloride. J Pharm Sci-Us. 2014;103(12):3914–23.CrossRefGoogle Scholar
  43. 43.
    Ruvinov E, Kryukov O, Forti E, Korin E, Goldstein M, Cohen S. Calcium-siRNA nanocomplexes: what reversibility is all about. J Control Release. 2015;203:150–60.CrossRefPubMedGoogle Scholar
  44. 44.
    Benfer M, Kissel T. Cellular uptake mechanism and knockdown activity of siRNA-loaded biodegradable DEAPA-PVA-g-PLGA nanoparticles. Eur J Pharm Biopharm. 2012;80(2):247–56.CrossRefPubMedGoogle Scholar
  45. 45.
    Douglas KL, Piccirillo CA, Tabrizian M. Cell line-dependent internalization pathways and intracellular trafficking determine transfection efficiency of nanoparticle vectors. Eur J Pharm Biopharm. 2008;68(3):676–87.CrossRefPubMedGoogle Scholar
  46. 46.
    Xu M, McCanna DJ, Sivak JG. Use of the viability reagent PrestoBlue in comparison with alamarBlue and MTT to assess the viability of human corneal epithelial cells. J Pharmacol Toxicol Methods. 2015;71:1–7.CrossRefPubMedGoogle Scholar
  47. 47.
    Merkel OM, Beyerle A, Beckmann BM, Zheng M, Hartmann RK, Stoger T, et al. Polymer-related off-target effects in non-viral siRNA delivery. Biomaterials. 2011;32(9):2388–98.CrossRefPubMedGoogle Scholar
  48. 48.
    Fischer D, Li Y, Ahlemeyer B, Krieglstein J, Kissel T. In vitro cytotoxicity testing of polycations: influence of polymer structure on cell viability and hemolysis. Biomaterials. 2003;24(7):1121–31.CrossRefPubMedGoogle Scholar
  49. 49.
    Xun MM, Liu YH, Guo Q, Zhang J, Zhang QF, WX W, et al. molecular weight PEI-appended polyesters as non-viral gene delivery vectors. Eur J Med Chem. 2014;78:118–25.CrossRefPubMedGoogle Scholar
  50. 50.
    Liang B, He ML, Xiao ZP, Li Y, Chan CY, Kung HF, et al. Synthesis and characterization of folate-PEG-grafted-hyperbranched-PEI for tumor-targeted gene delivery. Biochem Biophys Res Commun. 2008;367(4):874–80.CrossRefPubMedGoogle Scholar
  51. 51.
    Swami A, Goyal R, Tripathi SK, Singh N, Katiyar N, Mishra AK, et al. Effect of homobifunctional crosslinkers on nucleic acids delivery ability of PEI nanoparticles. Int J Pharm. 2009;374(1–2):125–38.CrossRefPubMedGoogle Scholar
  52. 52.
    Shaat H, Mostafa A, Moustafa M, Gamal-Eldeen A, Emam A, El-Hussieny E, et al. Modified gold nanoparticles for intracellular delivery of anti-liver cancer siRNA. Int J Pharm. 2016;504(1–2):125–33.CrossRefPubMedGoogle Scholar
  53. 53.
    Zhou L, Chen ZF, Chi WL, Yang XQ, Wang W, Zhang BL. Mono-methoxy-poly(3-hydroxybutyrate-co-4-hydroxybutyrate)-graft-hyper-branched polyethylenimine copolymers for siRNA delivery. Biomaterials. 2012;33(7):2334–44.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Larissa Bueno Tofani
    • 1
  • Lívia Vieira Depieri
    • 1
  • Patrícia Mazureki Campos
    • 1
  • Thalita Bachelli Riul
    • 1
  • Kamilla Swiech Antonietto
    • 1
  • Márcia Carvalho de Abreu Fantini
    • 2
  • Maria Vitória Lopes Badra Bentley
    • 1
  1. 1.School of Pharmaceutical Sciences of Ribeirao PretoUniversity of Sao PauloRibeirão PretoBrazil
  2. 2.Physics InstituteUniversity of Sao PauloSão PauloBrazil

Personalised recommendations