Abstract
Purpose
This study aimed to further explore the mechanisms behind the ability of certain linear polyamidoamines (PAAs) to transfect cells with minimal cytotoxicity.
Methods
The transfection efficiency of DNA complexed with a PAA of a molecular weight over 10 kDa or 25 kDa branched polyethyleneimine (BPEI) was compared in A549 cells using a luciferase reporter gene assay. The impact of endo/lysosomal escape on transgene expression was investigated by transfecting cells in presence of bafilomycin A1 or chloroquine. Cytotoxicity caused by the vectors was evaluated by measuring cell metabolic activity, lactate dehydrogenase release, formation of reactive oxygen species and changes in mitochondrial membrane potential.
Results
The luciferase activity was ~3-fold lower after transfection with PAA polyplexes than with BPEI complexes at the optimal polymer to nucleotide ratio (RU:Nt). However, in contrast to BPEI vectors, PAA polyplexes caused negligible cytotoxic effects. The transfection efficiency of PAA polyplexes was significantly reduced in presence of bafilomycin A1 while chloroquine enhanced or decreased transgene expression depending on the RU:Nt.
Conclusions
PAA polyplexes displayed a pH-dependent endo/lysosomal escape which was not associated with cytotoxic events, unlike observed with BPEI polyplexes. This is likely due to their greater interactions with biological membranes at acidic than neutral pH.
Similar content being viewed by others
Abbreviations
- BPEI:
-
Branched poly(ethyleneimine)
- EtBr:
-
Ethidium bromide
- FCCP:
-
Carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone
- H2DCFH-DA:
-
2′,7′-dichlorodihydrofluorescein diacetate
- JC-1:
-
5,5′,6,6′-tetrachloro-1,1′,3,3′-tetraethylbenzimidazolyl-carbocyanine iodide
- LDH:
-
Lactate dehydrogenase
- MBA-DMEDA:
-
Methylenebisacrylamide/dimethylethylenediamine
- MMP:
-
Mitochondrial membrane potential
- MTT:
-
3-[4,5-Dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide
- PAA:
-
Polyamidoamine
- PB:
-
PrestoBlue
- PBS:
-
Phosphate buffer saline
- pDNA:
-
Plasmid DNA
- PEG:
-
Polyethylene glycol
- PEI:
-
Poly(ethyleneimine)
- PLL:
-
Poly-L-lysine
- ROS:
-
Reactive oxygen species
- RU:Nt:
-
Polymer repeating unit to nucleotide ratio
References
Hunter AC. Molecular hurdles in polyfectin design and mechanistic background to polycation induced cytotoxicity. Adv Drug Deliv Rev. 2006;58(14):1523–31.
De Smedt SC, Demeester J, Hennink WE. Cationic polymer based gene delivery systems. Pharm Res. 2000;17(2):113–26.
Tros de Ilarduya C, Sun Y, Düzgüneş N. Gene delivery by lipoplexes and polyplexes. Eur J Pharm Sci. 2010;40(3):159–70.
Lv H, Zhang S, Wang B, Cui S, Yan J. Toxicity of cationic lipids and cationic polymers in gene delivery. J Control Release. 2006;114(1):100–9.
Jones CH, Chen C-K, Ravikrishnan A, Rane S, Pfeifer BA. Overcoming Nonviral Gene Delivery Barriers: Perspective and Future. Mol Pharm. 2013;10(11):4082–98.
Hunter AC, Moghimi SM. Cationic carriers of genetic material and cell death: a mitochondrial tale. Biochim Biophys Acta. 2010;1797(6–7):1203–9.
Grandinetti G, Smith AE, Reineke TM. Membrane and nuclear permeabilization by polymeric pDNA vehicles: efficient method for gene delivery or mechanism of cytotoxicity? Mol Pharm. 2012;9(3):523–38.
Vaidyanathan S, Orr BG, Banaszak Holl MM. Role of Cell Membrane–Vector Interactions in Successful Gene Delivery. Acc Chem Res. 2016;49(8):1486–93.
van de Wetering P, Cherng J-Y, Talsma H, Hennink WE. Relation between transfection efficiency and cytotoxicity of poly(2-(dimethylamino)ethyl methacrylate)/plasmid complexes. J Control Release. 1997;49(1):59–69.
Ogris M, Brunner S, Schüller S, Kircheis R, Wagner E. PEGylated DNA/transferrin-PEI complexes: reduced interaction with blood components, extended circulation in blood and potential for systemic gene delivery. Gene Ther. 1999;6(4):595–605.
Walker GF, Fella C, Pelisek J, Fahrmeir J, Boeckle S, Ogris M, et al. Toward synthetic viruses: endosomal pH-triggered deshielding of targeted polyplexes greatly enhances gene transfer in vitro and in vivo. Mol Ther. 2005;11(3):418–25.
Sung SJ, Min SH, Cho KY, Lee S, Min YJ, Yeom YI, et al. Effect of polyethylene glycol on gene delivery of polyethylenimine. Biol Pharm Bull. 2003;26(4):492–500.
Hill IR, Garnett MC, Bignotti F, Davis SS. In vitro cytotoxicity of poly(amidoamine)s: relevance to DNA delivery. Biochim Biophys Acta. 1999;1427(2):161–74.
Richardson S, Ferruti P, Duncan R. Poly(amidoamine)s as potential endosomolytic polymers: evaluation in vitro and body distribution in normal and tumour-bearing animals. J Drug Target. 1999;6(6):391–404.
Pettit MW, Griffiths P, Ferruti P, Richardson SC. Poly(amidoamine) polymers: soluble linear amphiphilic drug-delivery systems for genes, proteins and oligonucleotides. Ther Deliv. 2011;2(7):907–17.
Martello F, Piest M, Engbersen JFJ, Ferruti P. Effects of branched or linear architecture of bioreducible poly(amido amine)s on their in vitro gene delivery properties. J Control Release. 2012;164(3):372–9.
Jones NA, Hill IR, Stolnik S, Bignotti F, Davis SS, Garnett MC. Polymer chemical structure is a key determinant of physicochemical and colloidal properties of polymer-DNA complexes for gene delivery. Biochim Biophys Acta. 2000;1517(1):1–18.
Richardson SC, Pattrick NG, Man YK, Ferruti P, Duncan R. Poly(amidoamine)s as potential nonviral vectors: ability to form interpolyelectrolyte complexes and to mediate transfection in vitro. Biomacromolecules. 2001;2(3):1023–8.
Moghimi SM, Symonds P, Murray JC, Hunter AC, Debska G, Szewczyk A. A two-stage poly(ethylenimine)-mediated cytotoxicity: implications for gene transfer/therapy. Mol Ther. 2005;11(6):990–5.
Ranucci E, Ferruti P, Suardi MA, Manfredi A. Poly(amidoamine)s with 2-Dithiopyridine Side Substituents as Intermediates to Peptide–Polymer Conjugates. Macromol Rapid Commun. 2007;28(11):1243–50.
Ranucci E, Ferruti P, Lattanzio E, Manfredi A, Rossi M, Mussini PR, et al. Acid-base properties of poly(amidoamine)s. J Polym Sci A Polym Chem. 2009;47(24):6977–91.
Rejman J, Oberle V, Zuhorn IS, Hoekstra D. Size-dependent internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis. Biochem J. 2004;377(Pt 1):159–69.
Richardson SC, Pattrick NG, Lavignac N, Ferruti P, Duncan R. Intracellular fate of bioresponsive poly(amidoamine)s in vitro and in vivo. J Control Release. 2010;142(1):78–88.
Zorov DB, Juhaszova M, Sollott SJ. Mitochondrial ROS-induced ROS release: an update and review. Biochim Biophys Acta. 2006;1757(5–6):509–17.
Bowman EJ, Siebers A, Altendorf K. Bafilomycins: a class of inhibitors of membrane ATPases from microorganisms, animal cells, and plant cells. Proc Natl Acad Sci U S A. 1988;85(21):7972–6.
Crider BP, Xie XS, Stone DK. Bafilomycin inhibits proton flow through the H+ channel of vacuolar proton pumps. J Biol Chem. 1994;269(26):17379–81.
Clague MJ, Urbe S, Aniento F, Gruenberg J. Vacuolar ATPase activity is required for endosomal carrier vesicle formation. J Biol Chem. 1994;269(1):21–4.
Borgonovo B, Cocucci E, Racchetti G, Podini P, Bachi A, Meldolesi J. Regulated exocytosis: a novel, widely expressed system. Nat Cell Biol. 2002;4(12):955–62.
Völkl H, Friedrich F, Häussinger D, Lang F. Effect of cell volume on Acridine Orange fluorescence in hepatocytes. Biochem J. 1993;295(Pt 1):11–4.
Zhao H, Cai Y, Santi S, Lafrenie R, Lee H. Chloroquine-Mediated Radiosensitization Is Due to the Destablization of the Lysosomal Membrane and Subsequent Induction of Cell Death by Necrosis. Radiat Res. 2005;164(3):250–7.
Solomon VR, Lee H. Chloroquine and its analogs: A new promise of an old drug for effective and safe cancer therapies. Eur J Pharmacol. 2009;625(1):220–33.
De Duve C, De Barsy T, Poole B, Trouet A, Tulkens P, Fo VH. Lysosomotropic agents. Biochem Pharmacol. 1974;23(18):2495–531.
Ohkuma S, Poole B. Fluorescence probe measurement of the intralysosomal pH in living cells and the perturbation of pH by various agents. Proc Natl Acad Sci U S A. 1978;75(7):3327–31.
Luzio JP, Pryor PR, Bright NA. Lysosomes: fusion and function. Nat Rev Mol Cell Biol. 2007;8(8):622–32.
Rémy-Kristensen A, Clamme J-P, Vuilleumier C, Kuhry J-G, Mély Y. Role of endocytosis in the transfection of L929 fibroblasts by polyethylenimine/DNA complexes. Biochim Biophys Acta Biomembr. 2001;1514(1):21–32.
Vercauteren D, Deschout H, Remaut K, Engbersen JF, Jones AT, Demeester J, et al. Dynamic colocalization microscopy to characterize intracellular trafficking of nanomedicines. ACS Nano. 2011;5(10):7874–84.
Cohen S, Coue G, Beno D, Korenstein R, Engbersen JF. Bioreducible poly(amidoamine)s as carriers for intracellular protein delivery to intestinal cells. Biomaterials. 2012;33(2):614–23.
Benjaminsen RV, Mattebjerg MA, Henriksen JR, Moghimi SM, Andresen TL. The possible "proton sponge" effect of polyethylenimine (PEI) does not include change in lysosomal pH. Mol Ther. 2013;21(1):149–57.
Barbucci R, Casolaro M, Ferruti P, Barone V, Leli F, Oliva L. Macroinorganics. 7. Property structure relationships for polymeric bases whose monomeric units behave independently toward protonation. Macromolecules. 1981;14(5):1203–9.
Khayat Z, Griffiths PC, Grillo I, Heenan RK, King SM, Duncan R. Characterising the size and shape of polyamidoamines in solution as a function of pH using neutron scattering and pulsed-gradient spin-echo NMR. Int J Pharm. 2006;317(2):175–86.
Ferruti P, Manzoni S, Richardson SCW, Duncan R, Pattrick NG, Mendichi R, et al. Amphoteric Linear Poly(amido-amine)s as Endosomolytic Polymers: Correlation between Physicochemical and Biological Properties. Macromolecules. 2000;33(21):7793–800.
Griffiths PC, Khayat Z, Tse S, Heenan RK, King SM, Duncan R. Studies on the mechanism of interaction of a bioresponsive endosomolytic polyamidoamine with interfaces. 1. Micelles as model surfaces. Biomacromolecules. 2007;8(3):1004–12.
Battaglia G, Crea F, Crea P, De Stefano C, Sammartano S. Medium effect on the acid-base properties of branched polyethylenimine in different aqueous electrolyte solutions. J Chem Eng Data. 2009;54(2):502–10.
Grandinetti G, Ingle NP, Reineke TM. Interaction of poly(ethylenimine)-DNA polyplexes with mitochondria: implications for a mechanism of cytotoxicity. Mol Pharm. 2011;8(5):1709–19.
Pattrick NG, Richardson SC, Casolaro M, Ferruti P, Duncan R. Poly(amidoamine)-mediated intracytoplasmic delivery of ricin A-chain and gelonin. J Control Release. 2001;77(3):225–32.
ACKNOWLEDGMENTS AND DISCLOSURES
A.A.Y. Almulathanon was funded by the Ministry of Higher Education and Scientific Research (MOHESR) in Iraq.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Almulathanon, A.A.Y., Ranucci, E., Ferruti, P. et al. Comparison of Gene Transfection and Cytotoxicity Mechanisms of Linear Poly(amidoamine) and Branched Poly(ethyleneimine) Polyplexes. Pharm Res 35, 86 (2018). https://doi.org/10.1007/s11095-017-2328-7
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11095-017-2328-7