Pharmaceutical Research

, 35:73 | Cite as

Hyaluronidase Enzyme-responsive Targeted Nanoparticles for Effective Delivery of 5-Fluorouracil in Colon Cancer

  • Haiping Jiang
  • Xinyan Shi
  • Xiaoyun Yu
  • Xinjia He
  • Yongheng An
  • Haijun Lu
Research Paper
  • 212 Downloads

Abstract

Purpose

In this study, we have successfully prepared the hyaluronic acid (HA)-conjugated mesoporous silica nanoparticles loaded with 5-fluorouracil (5-FU) to increase the anticancer efficacy in colon cancers.

Methods

The particles were nanosized and perfectly spherical. In vitro release kinetics clearly showed the enzyme-sensitive release of 5-FU from HA-conjugated 5-FU loaded mesoporous silica nanoparticles (HA/FMSN).

Results

The presence of HA on the surface of nanoparticles targeted the CD44 receptors overexpressed in the colon cancer cells In vitro cell viability and apoptosis assay clearly showed the superior anticancer effect of HA/FMSN in HT29 colon cancer cells. HA/FMSN exhibited a remarkably higher 43% of cells in early apoptosis phase and 55% of cells in late apoptosis phase indicating the superior anticancer effect of HA/FMSN. HA/FMSN exhibited a significant reduction in the tumor burden compared to that of any group. HA/FMSN was 3-fold more effective than free drug and 2-fold more effective than -FU loaded mesoporous silica nanoparticles (FMSN).

Conclusions

Overall, results suggest that the novel delivery strategy could hold enormous potential in colon cancer targeting.

KEY WORDS

5-fluorouracil Apoptosis Colon cancers Hyaluronic acid Mesoporous silica nanoparticles 

Abbreviations

5-FU

5-fluorouracil

EPR

Enhanced permeation and retention effect

FMSN

5-FU loaded mesoporous silica nanoparticles

HA

Hyaluronic acid

MSN

Mesoporous silica nanoparticles

References

  1. 1.
    Clarke SJ, Karapetis CS, Gibbs P, Pavlakis N, Desai J, Michael M, et al. Overview of biomarkers in metastatic colorectal cancer: tumour, blood and patient-related factors. Crit Rev Oncol Hematol. 2013;85:121–35.CrossRefPubMedGoogle Scholar
  2. 2.
    Patel SG, Ahnen DJ. Familial colon cancer syndromes: an update of a rapidly evolving field. Current Gastroenterology Reports. 2012;14:428–38.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Yusoff HM, Daud N, Noor NM, Rahim AA. Participation and barriers to colorectal cancer screening in Malaysia. Asian Pac J Cancer Prev. 2012;13:3983–7.CrossRefPubMedGoogle Scholar
  4. 4.
    Longley DB, Harkin DP, Johnston PG. 5-Fluorouracil: mechanisms of action and clinical strategies. Nat Rev Cancer. 2003;3:330–8.CrossRefPubMedGoogle Scholar
  5. 5.
    Ortiz R, Prados J, et al. 5-Fluorouracil-loaded poly(ε-caprolactone) nanoparticles combined with phage E gene therapy as a new strategy against colon cancer. Int J Nanomedicine. 2012;7:95–107.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Anitha A, Sreeranganathan M, Chennazhi KP, Lakshmanan VK, Jayakumar R. In vitro combinatorial anticancer effects of 5-fluorouracil and curcumin loaded N,O-carboxymethyl chitosan nanoparticles toward colon cancer and in vivo pharmacokinetic studies. Eur J Pharm Biopharm. 2014;88:238–51.CrossRefPubMedGoogle Scholar
  7. 7.
    Ramasamy T et al. Smart chemistry-based nanosized drug delivery systems for systemic applications: A comprehensive review. J Control Release. 2017; S0168–3659(17)30559-X. doi: 10.1016/j.jconrel.2017.04.043.Google Scholar
  8. 8.
    Fang J, Nakamura H, Maeda H. The EPR effect: unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv Drug Deliv Rev. 2011;63:136–51.CrossRefPubMedGoogle Scholar
  9. 9.
    Gupta B, Ramasamy T, Poudel BK, et al. Development of Bioactive PEGylated Nanostructured Platforms for Sequential Delivery of Doxorubicin and Imatinib to Overcome Drug Resistance in Metastatic Tumors. ACS Appl Mater Interfaces. 2017;9:9280–90.CrossRefPubMedGoogle Scholar
  10. 10.
    Giret S, Man MWC, Carcel C. Mesoporous-silica-functionalized nanoparticles for drug delivery. Chem Eur J. 2015;21:13850–65.CrossRefPubMedGoogle Scholar
  11. 11.
    Sahoo B, Devi KSP, Dutta S, Maiti TK, Pramanik P, Dhara D. Biocompatible mesoporous silica-coated superparamagnetic manganese ferrite nanoparticles for targeted drug delivery and MR imaging applications. J Colloid Interface Sci. 2014;431:31–41.CrossRefPubMedGoogle Scholar
  12. 12.
    Yang P, Gai S, Lin J. Functionalized mesoporous silica materials for controlled drug delivery. Chem Soc Rev. 2012;41:3679–98.CrossRefPubMedGoogle Scholar
  13. 13.
    Zhu CL, CH L, Song XY, Yang HH, Wang XR. Bioresponsive controlled release using mesoporous silica nanoparticles capped with aptamer-based molecular gate. J Am Chem Soc. 2011;133:1278–81.CrossRefPubMedGoogle Scholar
  14. 14.
    Gimenez C, de la Torre C, Gorbe M, Aznar E, Sancenon F, Murguia JR, et al. Gated mesoporous silica nanoparticles for the controlled delivery of drugs in cancer cells. Langmuir. 2015;31:3753–62.CrossRefPubMedGoogle Scholar
  15. 15.
    Choi KY, Yoon HY, Kim J-H, Bae SM, Park R-W, Kang YM, et al. Smart nanocarrier based on PEGylated hyaluronic acid for cancer therapy. ACS Nano. 2011;5:8591–9.CrossRefPubMedGoogle Scholar
  16. 16.
    Dosio F, Arpicco S, Stella B, Fattal E. Hyaluronic acid for anticancer drug and nucleic acid delivery. Adv Drug Deliv Rev. 2016;97:204–36.CrossRefPubMedGoogle Scholar
  17. 17.
    Tran TH, Choi JY, Ramasamy T, et al. Hyaluronic acid-coated solid lipid nanoparticles for targeted delivery of vorinostat to CD44 overexpressing cancer cells. Carbohydr Polym. 2014;114:407–15. 201CrossRefPubMedGoogle Scholar
  18. 18.
    Stern R, Jedrzejas MJ. Hyaluronidases: their genomics, structures, and mechanisms of action. Chem Rev. 2006;106:818–39.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Chao KL, Muthukumar L, Herzberg O. Structure of human hyaluronidase-1, a hyaluronan hydrolyzing enzyme involved in tumor growth and angiogenesis. Biochemistry. 2007;46:6911–20.CrossRefPubMedGoogle Scholar
  20. 20.
    Cho EC, Zhang Q, Xia Y. The effect of sedimentation and diffusion on cellular uptake of gold nanoparticles. Nat Nanotechnol. 2011;6:385.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Pang X, Lu Z, Du H, Yang X, Zhai G. Hyaluronic acid-quercetin conjugate micelles: synthesis, characterization, in vitro and in vivo evaluation. Colloids Surf B Biointerfaces. 2014;123:778–86.CrossRefPubMedGoogle Scholar
  22. 22.
    Gulbake A, Jain A, Jain A, Jain A, Jain SK. Insight to drug delivery aspects for colorectal cancer. World J Gastroenterol. 2016;22:582–99.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Haiping Jiang
    • 1
  • Xinyan Shi
    • 2
  • Xiaoyun Yu
    • 1
  • Xinjia He
    • 1
  • Yongheng An
    • 1
  • Haijun Lu
    • 1
  1. 1.Department of OncologyAffiliated Hospital of Qingdao UniversityQingdaoChina
  2. 2.North Administration OfficeAffiliated Hospital of Qingdao UniversityQingdaoChina

Personalised recommendations