Skip to main content

Advertisement

Log in

Fabrication of 3-O-sn-Phosphatidyl-L-serine Anchored PLGA Nanoparticle Bearing Amphotericin B for Macrophage Targeting

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

To fabricate, characterize and evaluate 3-O-sn-Phosphatidyl-L-serine (PhoS) anchored PLGA nanoparticles for macrophage targeted therapeutic intervention of VL.

Materials and Methods

PLGA-AmpB NPs were prepared by well-established nanoprecipitation method and decorated with Phos by thin film hydration method. Physico-chemical characterization of the formulation was done by Zetasizer nano ZS and atomic force microscopy.

Results

The optimized formulation (particle size, 157.3 ± 4.64 nm; zeta potential, − 42.51 ± 2.11 mV; encapsulation efficiency, ∼98%) showed initial rapid release up to 8 h followed by sustained release until 72 h. PhoS generated ‘eat-me’ signal driven augmented macrophage uptake, significant increase in in-vitro (with ∼82% parasite inhibition) and in-vivo antileishmanial activity with preferential accumulation in macrophage rich organs liver and spleen were found. Excellent hemo-compatibility justified safety profile of developed formulation in comparison to commercial formulations.

Conclusion

The developed PhoS-PLGA-AmpB NPs have improved efficacy, and necessary stability which promisingly put itself as a better alternative to available commercial formulations for optimized treatment of VL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AmpB:

Amphotericin B

AmpT:

Amphotreat

LamN:

Lambin

PhoS:

3-O-sn-Phosphatidyl-L-serine

PLGA:

Poly (lactic-co-glycolic acid)

VL:

Visceral leishmaniasis

References

  1. Asthana S, Jaiswal AK, Gupta PK, Dube A, Chourasia MK. Th-1 biased immunomodulation and synergistic antileishmanial activity of stable cationic lipid–polymer hybrid nanoparticle: biodistribution and toxicity assessment of encapsulated amphotericin B. Eur J Pharm Biopharm. 2015;89:62–73.

    Article  CAS  PubMed  Google Scholar 

  2. Sundar S, More DK, Singh MK, Singh VP, Sharma S, Makharia A, et al. Failure of pentavalent antimony in visceral leishmaniasis in India: report from the center of the Indian epidemic. Clin Infect Dis. 2000;31:1104–7.

    Article  CAS  PubMed  Google Scholar 

  3. Tiuman TS, Santos AO, Ueda-Nakamura T, Filho BP, Nakamura CV. Recent advances in leishmaniasis treatment. Int J Infect Dis. 2011;15:e525–32.

    Article  CAS  PubMed  Google Scholar 

  4. Boelaert M, Criel B, Leeuwenburg J, Van Damme W, Le Ray D, Van der Stuyft P. Visceral leishmaniasis control: a public health perspective. Trans R Soc Trop Med Hyg. 2000;94:465–71.

    Article  CAS  PubMed  Google Scholar 

  5. Krieger M. Scavenger receptor class B type I is a multiligand HDL receptor that influences diverse physiologic systems. J Clin Invest. 2001;108:793–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ravichandranand KS, Lorenz U. Engulfment of apoptotic cells: signals for a good meal. Nat Rev Immunol. 2007;7:964–74.

    Article  Google Scholar 

  7. Platt N, da Silva RP, Gordon S. Class A scavenger receptors and the phagocytosis of apoptotic cells. Immunol Lett. 1999;65:15–9.

    Article  CAS  PubMed  Google Scholar 

  8. Schlegeland RA, Williamson P. Phosphatidylserine, a death knell. Cell Death Differ. 2001;8:551–63.

    Article  Google Scholar 

  9. Kansal S, Tandon R, Dwivedi P, Misra P, Verma PR, Dube A, et al. Development of nanocapsules bearing doxorubicin for macrophage targeting through the phosphatidylserine ligand: a system for intervention in visceral leishmaniasis. J Antimicrob Chemother. 2012;67:2650–60.

    Article  CAS  PubMed  Google Scholar 

  10. Chen X, Doffek K, Sugg SL, Shilyansky J. Phosphatidylserine regulates the maturation of human dendritic cells. J Immunol (Baltimore, Md : 1950). 2004;173:2985–94.

    Article  CAS  Google Scholar 

  11. Khatik R, Dwivedi P, Khare P, Kansal S, Dube A, Mishra PR, et al. Development of targeted 1,2-diacyl-sn-glycero-3-phospho-l-serine-coated gelatin nanoparticles loaded with amphotericin B for improved in vitro and in vivo effect in leishmaniasis. Expert Opin Drug Deliv. 2014;11:633–46.

    Article  CAS  PubMed  Google Scholar 

  12. Geelen T, Yeo SY, Paulis LE, Starmans LW, Nicolay K, Strijkers GJ. Internalization of paramagnetic phosphatidylserine-containing liposomes by macrophages. J Nanobiotechnol. 2012;10:37.

    Article  CAS  Google Scholar 

  13. Tempone AG, Perez D, Rath S, Vilarinho AL, Mortara RA, de Andrade HF Jr. Targeting Leishmania (L.) chagasi amastigotes through macrophage scavenger receptors: the use of drugs entrapped in liposomes containing phosphatidylserine. J Antimicrob Chemother. 2004;54:60–8.

    Article  CAS  PubMed  Google Scholar 

  14. Danhier F, Ansorena E, Silva JM, Coco R, Le Breton A, Préat V. PLGA-based nanoparticles: An overview of biomedical applications. J Control Release. 2012;161:505–22.

    Article  CAS  PubMed  Google Scholar 

  15. Bala I, Hariharan S, Kumar MN. PLGA nanoparticles in drug delivery: the state of the art. Crit Rev Ther Drug Carrier Syst. 2004;21:387–422.

    Article  CAS  PubMed  Google Scholar 

  16. Singh PK, Sah P, Meher JG, Joshi S, Pawar VK, Raval K, et al. Macrophage-targeted chitosan anchored PLGA nanoparticles bearing doxorubicin and amphotericin B against visceral leishmaniasis. RSC Adv. 2016;6:71705–18.

    Article  CAS  Google Scholar 

  17. Singh P, Gupta A, Jaiswal A, Dube A, Mishra S, Chaurasia MK. Design and development of Amphotericin B bearing polycaprolactone microparticles for macrophage targeting. J Biomed Nanotechnol. 2011;7:50–1.

    Article  CAS  PubMed  Google Scholar 

  18. Guzzarlamudi S, Singh PK, Pawar VK, Singh Y, Sharma K, Paliwal SK, et al. Synergistic Chemotherapeutic Activity of Curcumin Bearing Methoxypolyethylene Glycol-g-Linoleic Acid Based Micelles on Breast Cancer Cells. J Nanosci Nanotechnol. 2016;16:4180–90.

    Article  CAS  PubMed  Google Scholar 

  19. Chaurasia M, Singh PK, Jaiswal AK, Kumar A, Pawar VK, Dube A, et al. Bioinspired Calcium Phosphate Nanoparticles Featuring as Efficient Carrier and Prompter for Macrophage Intervention in Experimental Leishmaniasis. Pharm Res. 2016;33:2617–29.

    Article  CAS  PubMed  Google Scholar 

  20. Pawar VK, Panchal SB, Singh Y, Meher JG, Sharma K, Singh P, et al. Immunotherapeutic vitamin E nanoemulsion synergies the antiproliferative activity of paclitaxel in breast cancer cells via modulating Th1 and Th2 immune response. J Control Release. 2014;196:295–306.

    Article  CAS  PubMed  Google Scholar 

  21. Gupta PK, Jaiswal AK, Asthana S, Verma A, Kumar V, Shukla P, et al. Self Assembled Ionically Sodium Alginate Cross-Linked Amphotericin B Encapsulated Glycol Chitosan Stearate Nanoparticles: Applicability in Better Chemotherapy and Non-Toxic Delivery in Visceral Leishmaniasis. Pharm Res. 2015;32:1727–40.

    Article  CAS  PubMed  Google Scholar 

  22. Gupta G, Oghumu S, Satoskar AR. Mechanisms of Immune Evasion in Leishmaniasis. Adv Appl Microbiol. 2013;82:155–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Asthana S, Jaiswal AK, Gupta PK, Pawar VK, Dube A, Chourasia MK. Immunoadjuvant chemotherapy of visceral leishmaniasis in hamsters using Amphotericin B-encapsulated nanoemulsion template-based chitosan nanocapsules. Antimicrob Agents Chemother. 2013;57:1714–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sundar S, Mehta H, Suresh AV, Singh SP, Rai M, Murray HW. Amphotericin B treatment for Indian visceral leishmaniasis: conventional versus lipid formulations. Clin Infect Dis: Off Publ Infect Dis Soc Am. 2004;38:377–83.

    Article  CAS  Google Scholar 

  25. Ravichandran KS. Find-me and eat-me signals in apoptotic cell clearance: progress and conundrums. J Exp Med. 2010;207:1807–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Makadiaand HK, Siegel SJ. Poly Lactic-co-Glycolic Acid (PLGA) as Biodegradable Controlled Drug Delivery Carrier. Polymers. 2011;3:1377–97.

    Article  Google Scholar 

  27. Omar Zaki SS, Ibrahim MN, Katas H. Particle size affects concentration-dependent cytotoxicity of chitosan nanoparticles towards mouse hematopoietic stem cells. J Nanotechnol. 2015;2015:1–5.

    Article  Google Scholar 

  28. He C, Hu Y, Yin L, Tang C, Yin C. Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials. 2010;31:3657–66.

    Article  CAS  PubMed  Google Scholar 

  29. Knopik-Skrockaand A, Bielawski J. Differences in amphotericin-B-induced hemolysis between human erythrocytes from male and female donors. Biol Lett. 2005;42:49–60.

    Google Scholar 

  30. Kotler-Brajtburg J, Medoff G, Kobayashi G, Boggs S, Schlessinger D, Pandey R, et al. Classification of polyene antibiotics according to chemical structure and biological effects. Antimicrob Agents Chemother. 1979;15:716–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wu Y, Tibrewal N, Birge RB. Phosphatidylserine recognition by phagocytes: a view to a kill. Trends Cell Biol. 2006;16:189–97.

    Article  CAS  PubMed  Google Scholar 

  32. Kimani SG, Geng K, Kasikara C, Kumar S, Sriram G, Wu Y, et al. Contribution of Defective PS Recognition and Efferocytosis to Chronic Inflammation and Autoimmunity. Front Immunol. 2014;5:566.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Galvan MD, Foreman DB, Zeng E, Tan JC, Bohlson SS. Complement component C1q regulates macrophage expression of Mer tyrosine kinase to promote clearance of apoptotic cells. J Immunol (Baltimore, Md : 1950). 2012;188:3716–23.

    Article  CAS  Google Scholar 

  34. Osterand CN, Nacy CA. Macrophage activation to kill Leishmania tropica: kinetics of macrophage response to lymphokines that induce antimicrobial activities against amastigotes. J Immunol. 1984;132:1494–500.

    Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

We wish to acknowledge the financial support extended by Department of Science and Technology, Government of India under the project SR/SO/HS-218/2012. The authors are grateful to SAIF, CDRI, Lucknow for providing the flow cytometry facility. All authors declare no conflict of interest. This is CSIR-CDRI communication 9583.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manish K. Chourasia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, P.K., Jaiswal, A.K., Pawar, V.K. et al. Fabrication of 3-O-sn-Phosphatidyl-L-serine Anchored PLGA Nanoparticle Bearing Amphotericin B for Macrophage Targeting. Pharm Res 35, 60 (2018). https://doi.org/10.1007/s11095-017-2293-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11095-017-2293-1

KEY WORDS

Navigation