Pharmaceutical Research

, 35:71 | Cite as

The Placental Barrier: the Gate and the Fate in Drug Distribution

  • Nino Tetro
  • Sonia Moushaev
  • Miriam Rubinchik-Stern
  • Sara EyalEmail author
Expert Review Theme: The Use of Pharmaceuticals in Pregnancy and Lactation
Part of the following topical collections:
  1. The Use of Pharmaceuticals in Pregnancy and Lactation


Optimal development of the embryo and the fetus depends on placental passage of gases, nutrients, hormones, and waste products. These molecules are transferred across the placenta via passive diffusion, carrier-mediated cellular uptake and efflux, and transcytosis pathways. The same mechanisms additionally control the rate and extent of transplacental transfer of drugs taken by the pregnant mother. Essentially all drugs cross the placenta to a certain extent, and some accumulate in the placenta itself at levels that can even exceed those in maternal plasma. Hence, even drugs that are not efficiently transferred across the placenta may indirectly affect fetal development by interfering with placental function. In this article, we describe key properties of the placental barrier and their modulation by medications. We highlight implications for pharmacotherapy and novel approaches for drug delivery in pregnant women and their fetuses.


drug transporters maternal-fetal pharmacology placenta placental transfer pregnancy 



Adenosine triphosphate binding cassette


Placental brush-border membrane vesicles


Breast cancer resistance protein


Concentrative nucleoside transporter


Cytochrome P-450


Equilibrative nucleoside transporter


Neonatal Fc receptors


L-type amino acid transporter


Multidrug resistance protein


Multidrug resistance-associated protein


Norepinephrine transporter


Organic anion transporter


Organic anion transporting polypeptide


Organic cation transporter




Reduced folate carrier


Serotonin transporter


Solute carrier


Uridine diphosphate glucoronosyltransferase



The authors acknowledge the support of the Israel Science Foundation (ISF) Grant 506/13.

Sara Eyal is affiliated with the David R. Bloom Centre for Pharmacy and Dr. Adolf and Klara Brettler Centre for Research in Molecular Pharmacology and Therapeutics at The Hebrew University of Jerusalem, Israel.

Compliance with ethical standards

The authors have no commercial or financial relationships that could be constructed as a potential conflict of interest.

Supplementary material

11095_2017_2286_MOESM1_ESM.docx (46 kb)
ESM 1 (DOCX 45 kb)


  1. 1.
    Dally A. Thalidomide: was the tragedy preventable? Lancet. 1998;351:1197–9.PubMedCrossRefGoogle Scholar
  2. 2.
    Barker RH. Placental transfer of sulfanilamide. N Engl J Med. 1938;41:219.Google Scholar
  3. 3.
    Speert H. Passage of sulfanilamide through human placenta. Bull Johns Hopkins Hosp. 1938;63:337–9.Google Scholar
  4. 4.
    Ginsburg J. Placental drug transfer. Annu Rev Pharmacol. 1971;11:387–408.PubMedCrossRefGoogle Scholar
  5. 5.
    Grumbach MM, Werner SC. Transfer of thyroid hormone across the human placenta at term. J Clin Endocrinol Metab. 1956;16:1392–5.PubMedCrossRefGoogle Scholar
  6. 6.
    Sandler M, Ruthven CR, Contractor SF, Wood C, Booth RT, Pinkerton JH. Transmission of noradrenaline across the human placents. Nature. 1963;197:598.PubMedCrossRefGoogle Scholar
  7. 7.
    Abramovich DR, Wade AP. Transplacental passage of steroids: the presence of corticosteroids in amniotic fluid. J Obstet Gynaecol Br Commonw. 1969;76:610–4.PubMedCrossRefGoogle Scholar
  8. 8.
    Burton GJ, Jauniaux E. What is the placenta? Am J Obstet Gynecol. 2015;213:S6–8.PubMedCrossRefGoogle Scholar
  9. 9.
    Guttmacher AE, Maddox YT, Spong CY. The human placenta project: placental structure, development and function in real time. Placenta. 2014;35:303–4.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Maltepe E, Fisher SJ. Placenta: the forgotten organ. Annu Rev Cell Dev Biol. 2015;31:523–52.PubMedCrossRefGoogle Scholar
  11. 11.
    DeVane L, Goetzl LM, Ramamoorthy S. Exposing fetal drug exposure. Clin Pharmacol Ther. 2011;89:786–8.PubMedCrossRefGoogle Scholar
  12. 12.
    Goodman AG, Rall TW, Nies AS, Taylor P. Goodman and Gilman’s the pharmacological basis of therapeutics. Eighth ed. New York: Mcgraw-Hill (Tx); 2000.Google Scholar
  13. 13.
    Tomi M, Nishimura T, Nakashima E. Mother-to-fetus transfer of antiviral drugs and the involvement of transporters at the placental barrier. J Pharm Sci. 2011;100:3708–18.PubMedCrossRefGoogle Scholar
  14. 14.
    Burton GJ, Fowden AL. The placenta: a multifaceted, transient organ. Philos Trans R Soc Lond B Biol Sci. 2015;370(1663).Google Scholar
  15. 15.
    Huppertz B. The anatomy of the normal placenta. J Clin Pathol. 2008;61:1296–302.PubMedCrossRefGoogle Scholar
  16. 16.
    Hutson JR, Garcia-Bournissen F, Davis A, Koren G. The human placental perfusion model: a systematic review and development of a model to predict in vivo transfer of therapeutic drugs. Clin Pharmacol Ther. 2011;90:67–76.PubMedCrossRefGoogle Scholar
  17. 17.
    Bajoria R, Contractor SF. Transfer of heparin across the human perfused placental lobule. J Pharm Pharmacol. 1992;44:952–9.PubMedCrossRefGoogle Scholar
  18. 18.
    Holcberg G, Tsadkin-Tamir M, Sapir O, Wiznizer A, Segal D, Polachek H, et al. Transfer of insulin lispro across the human placenta. Eur J Obstet Gynecol Reprod Biol. 2004;115:117–8.PubMedCrossRefGoogle Scholar
  19. 19.
    van der Aa EM, Peereboom-Stegeman JH, Noordhoek J, Gribnau FW, Russel FG. Mechanisms of drug transfer across the human placenta. Pharm World Sci. 1998;20:139–48.PubMedCrossRefGoogle Scholar
  20. 20.
    Reynolds F. Placental transfer of drugs. Curr Anaesth Crit Care. 1991;2:108–16.CrossRefGoogle Scholar
  21. 21.
    Rubinchik-Stern M, Eyal S. Drug interactions at the human placenta: what is the evidence? Front Pharmacol. 2012;3:126.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Prouillac C, Lecoeur S. The role of the placenta in fetal exposure to xenobiotics: importance of membrane transporters and human models for transfer studies. Drug Metab Dispos. 2010;38:1623–35.PubMedCrossRefGoogle Scholar
  23. 23.
    Vähäkangas K, Myllynen P. Drug transporters in the human blood-placental barrier. Br J Pharmacol. 2009;158:665–78.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Prasad PD, Ramamoorthy S, Moe AJ, Smith CH, Leibach FH, Ganapathy V. Selective expression of the high-affinity isoform of the folate receptor (FR-alpha) in the human placental syncytiotrophoblast and choriocarcinoma cells. Biochim Biophys Acta. 1994;1223:71–5.PubMedCrossRefGoogle Scholar
  25. 25.
    Staud F, Cerveny L, Ceckova M. Pharmacotherapy in pregnancy; effect of ABC and SLC transporters on drug transport across the placenta and fetal drug exposure. J Drug Target. 2012;20:736–63.PubMedCrossRefGoogle Scholar
  26. 26.
    Del Amo E, Urtti A, Yliperttula M. Pharmacokinetic role of L-type amino acid transporters LAT1 and LAT2. Eur J Pharm Sci. 2008;35:161–74.PubMedCrossRefGoogle Scholar
  27. 27.
    Ganapathy V, Prasad PD. Role of transporters in placental transfer of drugs. Toxicol Appl Pharmacol. 2005;207:381–7.PubMedCrossRefGoogle Scholar
  28. 28.
    Ni Z, Mao Q. ATP-binding cassette efflux transporters in human placenta. Curr Pharm Biotechnol. 2011;12:674–85.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Shen DW, Fojo A, Chin JE, Roninson IB, Richert N, Pastan I, et al. Human multidrug-resistant cell lines: increased mdr1 expression can precede gene amplification. Science. 1986;232:643–5.PubMedCrossRefGoogle Scholar
  30. 30.
    Schinkel AH, Mayer U, Wagenaar E, Mol CA, van Deemter L, Smit JJ, et al. Normal viability and altered pharmacokinetics in mice lacking mdr1-type (drug-transporting) P-glycoproteins. Proc Natl Acad Sci U S A. 1997;94:4028–33.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Morrissey KM, Wen CC, Johns SJ, Zhang L, Huang SM, Giacomini KM. The UCSF-FDA transportal: a public drug transporter database. Clin Pharmacol Ther. 2012;92:545–6.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Mathias AA, Hitti J, Unadkat JD. P-glycoprotein and breast cancer resistance protein expression in human placentae of various gestational ages. Am J Physiol Regul Integr Comp Physiol. 2005;289:R963–9.PubMedCrossRefGoogle Scholar
  33. 33.
    Sun M, Kingdom J, Baczyk D, Lye SJ, Matthews SG, Gibb W. Expression of the multidrug resistance P-glycoprotein, (ABCB1 glycoprotein) in the human placenta decreases with advancing gestation. Placenta. 2006;27:602–9.PubMedCrossRefGoogle Scholar
  34. 34.
    Hutson JR, Koren G, Matthews SG. Placental P-glycoprotein and breast cancer resistance protein: influence of polymorphisms on fetal drug exposure and physiology. Placenta. 2010;31:351–7.PubMedCrossRefGoogle Scholar
  35. 35.
    Joshi AA, Vaidya SS, St-Pierre MV, Mikheev AM, Desino KE, Nyandege AN, et al. Placental ABC transporters: biological impact and pharmaceutical significance. Pharm Res. 2016;33:2847–78.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Lankas GR, Wise LD, Cartwright ME, Pippert T, Umbenhauer DR. Placental P-glycoprotein deficiency enhances susceptibility to chemically induced birth defects in mice. Reprod Toxicol. 1998;12:457–63.PubMedCrossRefGoogle Scholar
  37. 37.
    Smit JW, Huisman MT, van Tellingen O, Wiltshire HR, Schinkel AH. Absence or pharmacological blocking of placental P-glycoprotein profoundly increases fetal drug exposure. J Clin Invest. 1999;104:1441–7.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Eyal S, Chung FS, Muzi M, Link JM, Mankoff DA, Kaddoumi A, et al. Simultaneous PET imaging of P-plycoprotein inhibition in multiple tissues in the pregnant non-human primate. J Nucl Med. 2009;50:798–806.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Ke AB, Eyal S, Chung FS, Link JM, Mankoff DA, Muzi M, et al. Modeling cyclosporine A inhibition of the distribution of a P-glycoprotein PET ligand, 11C-verapamil, into the maternal brain and fetal liver of the pregnant nonhuman primate: impact of tissue blood flow and site of inhibition. J Nucl Med. 2013;54:437–46.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Myllynen P, Vahakangas K. Placental transfer and metabolism: an overview of the experimental models utilizing human placental tissue. Toxicol in Vitro. 2013;27:507–12.PubMedCrossRefGoogle Scholar
  41. 41.
    Maliepaard M, Scheffer GL, Faneyte IF, van Gastelen MA, Pijnenborg AC, Schinkel AH, et al. Subcellular localization and distribution of the breast cancer resistance protein transporter in normal human tissues. Cancer Res. 2001;61:3458–64.PubMedGoogle Scholar
  42. 42.
    Kobayashi D, Ieiri I, Hirota T, Takane H, Maegawa S, Kigawa J, et al. Functional assessment of ABCG2 (BCRP) gene polymorphisms to protein expression in human placenta. Drug Metab Dispos. 2005;33:94–101.PubMedCrossRefGoogle Scholar
  43. 43.
    Wang C, Xie L, Li H, Li Y, Mu D, Zhou R, et al. Associations between ABCG2 gene polymorphisms and isolated septal defects in a Han Chinese population. DNA Cell Biol. 2014;33:689–98.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Evseenko DA, Murthi P, Paxton JW, Reid G, Emerald BS, Mohankumar KM, et al. The ABC transporter BCRP/ABCG2 is a placental survival factor, and its expression is reduced in idiopathic human fetal growth restriction. FASEB J. 2007;21:3592–605.PubMedCrossRefGoogle Scholar
  45. 45.
    Gupta A, Dai Y, Vethanayagam RR, Hebert MF, Thummel KE, Unadkat JD, et al. Cyclosporin A, tacrolimus and sirolimus are potent inhibitors of the human breast cancer resistance protein (ABCG2) and reverse resistance to mitoxantrone and topotecan. Cancer Chemother Pharmacol. 2006;58:374–83.PubMedCrossRefGoogle Scholar
  46. 46.
    Gupta A, Zhang Y, Unadkat JD, Mao Q. HIV protease inhibitors are inhibitors but not substrates of the human breast cancer resistance protein (BCRP/ABCG2). J Pharmacol Exp Ther. 2004;310:334–41.PubMedCrossRefGoogle Scholar
  47. 47.
    Pollex E, Lubetsky A, Koren G. The role of placental breast cancer resistance protein in the efflux of glyburide across the human placenta. Placenta. 2008;29:743–7.PubMedCrossRefGoogle Scholar
  48. 48.
    Bakhsheshian J, Wei BR, Chang KE, Shukla S, Ambudkar SV, Simpson RM, et al. Bioluminescent imaging of drug efflux at the blood-brain barrier mediated by the transporter ABCG2. Proc Natl Acad Sci U S A. 2013;110:20801–6.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Kumar JS, Wei BR, Madigan JP, Simpson RM, Hall MD, Gottesman MM. Bioluminescent imaging of ABCG2 efflux activity at the blood-placenta barrier. Sci Rep. 2016;6:20418.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Hagenbuch B, Meier PJ. Organic anion transporting polypeptides of the OATP/SLC21 family: phylogenetic classification as OATP/SLCO superfamily, new nomenclature and molecular/functional properties. Pflugers Arch. 2004;447:653–65.PubMedCrossRefGoogle Scholar
  51. 51.
    Nagashige M, Ushigome F, Koyabu N, Hirata K, Kawabuchi M, Hirakawa T, et al. Basal membrane localization of MRP1 in human placental trophoblast. Placenta. 2003;24:951–8.PubMedCrossRefGoogle Scholar
  52. 52.
    St-Pierre MV, Serrano MA, Macias RI, Dubs U, Hoechli M, Lauper U, et al. Expression of members of the multidrug resistance protein family in human term placenta. Am J Phys. 2000;279:R1495–503.CrossRefGoogle Scholar
  53. 53.
    Pascolo L, Fernetti C, Pirulli D, Crovella S, Amoroso A, Tiribelli C. Effects of maturation on RNA transcription and protein expression of four MRP genes in human placenta and in BeWo cells. Biochem Biophys Res Commun. 2003;303:259–65.PubMedCrossRefGoogle Scholar
  54. 54.
    Nishimura M, Naito S. Tissue-specific mRNA expression profiles of human ATP-binding cassette and solute carrier transporter superfamilies. Drug Metab Pharmacokinet. 2005;20:452–77.PubMedCrossRefGoogle Scholar
  55. 55.
    Azzaroli F, Mennone A, Feletti V, Simoni P, Baglivo E, Montagnani M, et al. Clinical trial: modulation of human placental multidrug resistance proteins in cholestasis of pregnancy by ursodeoxycholic acid. Aliment Pharmacol Ther. 2007;26:1139–46.PubMedCrossRefGoogle Scholar
  56. 56.
    Zeng H, Liu G, Rea PA, Kruh GD. Transport of amphipathic anions by human multidrug resistance protein 3. Cancer Res. 2000;60:4779–84.PubMedGoogle Scholar
  57. 57.
    Jedlitschky G, Burchell B, Keppler D. The multidrug resistance protein 5 functions as an ATP-dependent export pump for cyclic nucleotides. J Biol Chem. 2000;275:30069–74.PubMedCrossRefGoogle Scholar
  58. 58.
    Ugele B, St-Pierre MV, Pihusch M, Bahn A, Hantschmann P. Characterization and identification of steroid sulfate transporters of human placenta. Am J Physiol Endocrinol Metab. 2003;284:E390–8.PubMedCrossRefGoogle Scholar
  59. 59.
    Sato K, Sugawara J, Sato T, Mizutamari H, Suzuki T, Ito A, et al. Expression of organic anion transporting polypeptide E (OATP-E) in human placenta. Placenta. 2003;24:144–8.PubMedCrossRefGoogle Scholar
  60. 60.
    Obaidat A, Roth M, Hagenbuch B. The expression and function of organic anion transporting polypeptides in normal tissues and in cancer. Annu Rev Pharmacol Toxicol. 2012;52:135–51.PubMedCrossRefGoogle Scholar
  61. 61.
    Tertti K, Petsalo A, Niemi M, Ekblad U, Tolonen A, Rönnemaa T, et al. Transfer of repaglinide in the dually perfused human placenta and the role of organic anion transporting polypeptides (OATPs). Eur J Pharm Sci. 2011;44:181–6.PubMedCrossRefGoogle Scholar
  62. 62.
    Grube M, Reuther S, Meyer Zu Schwabedissen H, Köck K, Draber K, Ritter CA, et al. Organic anion transporting polypeptide 2B1 and breast cancer resistance protein interact in the transepithelial transport of steroid sulfates in human placenta. Drug Metab Dispos. 2007;35:30–5.Google Scholar
  63. 63.
    Ugele B, Bahn A, Rex-Haffner M. Functional differences in steroid sulfate uptake of organic anion transporter 4 (OAT4) and organic anion transporting polypeptide 2B1 (OATP2B1) in human placenta. J Steroid Biochem Mol Biol. 2008;111:1–6.PubMedCrossRefGoogle Scholar
  64. 64.
    Takeda M, Khamdang S, Narikawa S, Kimura H, Kobayashi Y, Yamamoto T, et al. Human organic anion transporters and human organic cation transporters mediate renal antiviral transport. J Pharmacol Exp Ther. 2002;300:918–24.PubMedCrossRefGoogle Scholar
  65. 65.
    Sata R, Ohtani H, Tsujimoto M, Murakami H, Koyabu N, Nakamura T, et al. Functional analysis of organic cation transporter 3 expressed in human placenta. J Pharmacol Exp Ther. 2005;315:888–95.PubMedCrossRefGoogle Scholar
  66. 66.
    Jonker JW, Schinkel AH. Pharmacological and physiological functions of the polyspecific organic cation transporters: OCT1, 2, and 3 (SLC22A1-3). J Pharmacol Exp Ther. 2004;308:2–9.PubMedCrossRefGoogle Scholar
  67. 67.
    Wessler I, Roth E, Deutsch C, Brockerhoff P, Bittinger F, Kirkpatrick CJ, et al. Release of non-neuronal acetylcholine from the isolated human placenta is mediated by organic cation transporters. Br J Pharmacol. 2001;134:951–6.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Kovo M, Kogman N, Ovadia O, Nakash I, Golan A, Hoffman A. Carrier-mediated transport of metformin across the human placenta determined by using the ex vivo perfusion of the placental cotyledon model. Prenat Diagn. 2008;28:544–8.PubMedCrossRefGoogle Scholar
  69. 69.
    Tertti K, Ekblad U, Heikkinen T, Rahi M, Rönnemaa T, Laine K. The role of organic cation transporters (OCTs) in the transfer of metformin in the dually perfused human placenta. Eur J Pharm Sci. 2010;39:76–81.PubMedCrossRefGoogle Scholar
  70. 70.
    Shekhawat PS, Yang HS, Bennett MJ, Carter AL, Matern D, Tamai I, et al. Carnitine content and expression of mitochondrial beta-oxidation enzymes in placentas of wild-type (OCTN2(+/+)) and OCTN2 Null (OCTN2(−/−)) Mice. Pediatr Res. 2004;56:323–8.PubMedCrossRefGoogle Scholar
  71. 71.
    Yabuuchi H, Tamai I, Nezu J, Sakamoto K, Oku A, Shimane M, et al. Novel membrane transporter OCTN1 mediates multispecific, bidirectional, and pH-dependent transport of organic cations. J Pharmacol Exp Ther. 1999;289:768–73.PubMedGoogle Scholar
  72. 72.
    Errasti-Murugarren E, Diaz P, Godoy V, Riquelme G, Pastor-Anglada M. Expression and distribution of nucleoside transporter proteins in the human syncytiotrophoblast. Mol Pharmacol. 2011;80:809–17.PubMedCrossRefGoogle Scholar
  73. 73.
    Govindarajan R, Bakken AH, Hudkins KL, Lai Y, Casado FJ, Pastor-Anglada M, et al. In situ hybridization and immunolocalization of concentrative and equilibrative nucleoside transporters in the human intestine, liver, kidneys, and placenta. Am J Physiol Regul Integr Comp Physiol. 2007;293:R1809–22.PubMedCrossRefGoogle Scholar
  74. 74.
    Griffiths M, Beaumont N, Yao SY, Sundaram M, Boumah CE, Davies A, et al. Cloning of a human nucleoside transporter implicated in the cellular uptake of adenosine and chemotherapeutic drugs. Nat Med. 1997;3:89–93.PubMedCrossRefGoogle Scholar
  75. 75.
    Endres CJ, Moss AM, Ishida K, Govindarajan R, Unadkat JD. The role of the equilibrative nucleoside transporter 1 on tissue and fetal distribution of ribavirin in the mouse. Biopharm Drug Dispos. 2016;37:336–44.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Bzoskie L, Yen J, Tseng YT, Blount L, Kashiwai K, Padbury JF. Human placental norepinephrine transporter mRNA: expression and correlation with fetal condition at birth. Placenta. 1997;18:205–10.PubMedCrossRefGoogle Scholar
  77. 77.
    Prasad PD, Hoffmans BJ, Moe AJ, Smith CH, Leibach FH, Ganapathy V. Functional expression of the plasma membrane serotonin transporter but not the vesicular monoamine transporter in human placental trophoblasts and choriocarcinoma cells. Placenta. 1996;17:201–7.PubMedCrossRefGoogle Scholar
  78. 78.
    Ganapathy V. Drugs of abuse and human placenta. Life Sci. 2011;88:926–30.PubMedCrossRefGoogle Scholar
  79. 79.
    Madras BK, Miller GM, Fischman AJ. The dopamine transporter and attention-deficit/hyperactivity disorder. Biol Psychiatry. 2005;57:1397–409.PubMedCrossRefGoogle Scholar
  80. 80.
    Velasquez JC, Goeden N, Bonnin A. Placental serotonin: implications for the developmental effects of SSRIs and maternal depression. Front Cell Neurosci. 2013;7:47.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Schneider H, Miller RK. Receptor-mediated uptake and transport of macromolecules in the human placenta. Int J Dev Biol. 2010;54:367–75.PubMedCrossRefGoogle Scholar
  82. 82.
    Akour AA, Kennedy MJ, Gerk P. Receptor-mediated endocytosis across human placenta: emphasis on megalin. Mol Pharm. 2013;10:1269–78.PubMedCrossRefGoogle Scholar
  83. 83.
    Arora K, Sequeira JM, Quadros EV. Maternofetal transport of vitamin B12: role of TCblR/CD320 and megalin. FASEB J. 2017;31:3098–106.PubMedCrossRefGoogle Scholar
  84. 84.
    Akour AA, Kennedy MJ, Gerk PM. The role of megalin in the transport of gentamicin across BeWo cells, an in vitro model of the human placenta. AAPS J. 2015;17:1193–9.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Maberry MC, Trimmer KJ, Bawdon RE, Sobhi S, Dax JB, Gilstrap LC 3rd. Antibiotic concentration in maternal blood, cord blood and placental tissue in women with chorioamnionitis. Gynecol Obstet Investig. 1992;33:185–6.CrossRefGoogle Scholar
  86. 86.
    Beck A, Goetsch L, Dumontet C, Corvaia N. Strategies and challenges for the next generation of antibody-drug conjugates. Nat Rev Drug Discov. 2017;16:315–37.PubMedCrossRefGoogle Scholar
  87. 87.
    Beck A, Wurch T, Bailly C, Corvaia N. Strategies and challenges for the next generation of therapeutic antibodies. Nat Rev Immunol. 2010;10:345–52.PubMedCrossRefGoogle Scholar
  88. 88.
    Kane SV, Acquah LA. Placental transport of immunoglobulins: a clinical review for gastroenterologists who prescribe therapeutic monoclonal antibodies to women during conception and pregnancy. Am J Gastroenterol. 2009;104:228–33.PubMedCrossRefGoogle Scholar
  89. 89.
    Mahadevan U, McConnell RA, Chambers CD. Drug safety and risk of adverse outcomes for pregnant patients with inflammatory bowel disease. Gastroenterology. 2017;152:451–62.e2.PubMedCrossRefGoogle Scholar
  90. 90.
    Mahadevan U, Wolf DC, Dubinsky M, Cortot A, Lee SD, Siegel CA, et al. Placental transfer of anti-tumor necrosis factor agents in pregnant patients with inflammatory bowel disease. Clin Gastroenterol Hepatol. 2013;11:286–e24.PubMedCrossRefGoogle Scholar
  91. 91.
    Malek A. Ex vivo human placenta models: transport of immunoglobulin G and its subclasses. Vaccine. 2003;21:3362–4.PubMedCrossRefGoogle Scholar
  92. 92.
    Julsgaard M, Christensen LA, Gibson PR, Gearry RB, Fallingborg J, Hvas CL, et al. Concentrations of adalimumab and infliximab in mothers and newborns, and effects on infection. Gastroenterology. 2016;151:110–9.PubMedCrossRefGoogle Scholar
  93. 93.
    Porter C, Armstrong-Fisher S, Kopotsha T, Smith B, Baker T, Kevorkian L, et al. Certolizumab pegol does not bind the neonatal Fc receptor (FcRn): Consequences for FcRn-mediated in vitro transcytosis and ex vivo human placental transfer. J Reprod Immunol. 2016;116:7–12.PubMedCrossRefGoogle Scholar
  94. 94.
    Miller RK, Mace K, Polliotti B, DeRita R, Hall W, Treacy G. Marginal transfer of ReoPro (Abciximab) compared with immunoglobulin G (F105), inulin and water in the perfused human placenta in vitro. Placenta. 2003;24:727–38.PubMedCrossRefGoogle Scholar
  95. 95.
    Kathpalia P, Kane S, Mahadevan U. Detectable drug levels in infants exposed to biologics: so what? Gastroenterology. 2016;151:25–6.PubMedCrossRefGoogle Scholar
  96. 96.
    Keelan JA, Leong JW, Ho D, Iyer KS. Therapeutic and safety considerations of nanoparticle-mediated drug delivery in pregnancy. Nanomedicine (Lond). 2015;10:2229–47.CrossRefGoogle Scholar
  97. 97.
    Ockleford CD, Menon G. Differentiated regions of human placental cell surface associated with exchange of materials between maternal and foetal blood: a new organelle and the binding of iron. J Cell Sci. 1977;25:279–91.PubMedGoogle Scholar
  98. 98.
    Wiu AE. In transport at the cellular level. Symp Soc Exp Biol. 1974;28:521–46.Google Scholar
  99. 99.
    Wood GW. Mononuclear phagocytes in the human placenta. Placenta. 1980;1:113–23.PubMedCrossRefGoogle Scholar
  100. 100.
    Menjoge AR, Rinderknecht AL, Navath RS, Faridnia M, Kim CJ, Romero R, et al. Transfer of PAMAM dendrimers across human placenta: prospects of its use as drug carrier during pregnancy. J Control Release. 2011;150:326–38.PubMedCrossRefGoogle Scholar
  101. 101.
    Tian X, Zhu M, Du L, Wang J, Fan Z, Liu J, et al. Intrauterine inflammation increases materno-fetal transfer of gold nanoparticles in a size-dependent manner in murine pregnancy. Small. 2013;9:2432–9.PubMedCrossRefGoogle Scholar
  102. 102.
    Tuzel-Kox SN, Patel HM, Kox WJ. Uptake of drug-carrier liposomes by placenta: transplacental delivery of drugs and nutrients. J Pharmacol Exp Ther. 1995;274:104–9.PubMedGoogle Scholar
  103. 103.
    Bajoria R, Sooranna SR, Contractor SF. Endocytotic uptake of small unilamellar liposomes by human trophoblast cells in culture. Hum Reprod. 1997;12:1343–8.PubMedCrossRefGoogle Scholar
  104. 104.
    Bajoria R, Fisk NM, Contractor SF. Liposomal thyroxine: a noninvasive model for transplacental fetal therapy. J Clin Endocrinol Metab. 1997;82:3271–7.PubMedGoogle Scholar
  105. 105.
    Wick P, Malek A, Manser P, Meili D, Maeder-Althaus X, Diener L, et al. Barrier capacity of human placenta for nanosized materials. Environ Health Perspect. 2010;118:432–6.PubMedCrossRefGoogle Scholar
  106. 106.
    Poulsen MS, Mose T, Maroun LL, Mathiesen L, Knudsen LE, Rytting E. Kinetics of silica nanoparticles in the human placenta. Nanotoxicology. 2015;(Suppl 1):79–86.Google Scholar
  107. 107.
    Myllynen P, Immonen E, Kummu M, Vähäkangas K. Developmental expression of drug metabolizing enzymes and transporter proteins in human placenta and fetal tissues. Expert Opin Drug Metab Toxicol. 2009;5:1483–99.PubMedCrossRefGoogle Scholar
  108. 108.
    Syme MR, Paxton JW, Keelan JA. Drug transfer and metabolism by the human placenta. Clin Pharmacokinet. 2004;43:487–514.PubMedCrossRefGoogle Scholar
  109. 109.
    Nishimura M, Yaguti H, Yoshitsugu H, Naito S, Satoh T. Tissue distribution of mRNA expression of human cytochrome P450 isoforms assessed by high-sensitivity real-time reverse transcription PCR. Yakugaku Zasshi. 2003;123:369–75.PubMedCrossRefGoogle Scholar
  110. 110.
    Pavek P, Smutny T. Nuclear receptors in regulation of biotransformation enzymes and drug transporters in the placental barrier. Drug Metab Rev. 2014;46:19–32.PubMedCrossRefGoogle Scholar
  111. 111.
    Collier AC, Ganley NA, Tingle MD, Blumenstein M, Marvin KW, Paxton JW, et al. UDP-glucuronosyltransferase activity, expression and cellular localization in human placenta at term. Biochem Pharmacol. 2002;63:409–19.PubMedCrossRefGoogle Scholar
  112. 112.
    Corbel T, Perdu E, Gayrard V, Puel S, Lacroix MZ, Viguie C, et al. Conjugation and deconjugation reactions within the fetoplacental compartment in a sheep model: a key factor determining bisphenol A fetal exposure. Drug Metab Dispos. 2015;43:467–76.PubMedCrossRefGoogle Scholar
  113. 113.
    Schuetz JD, Kauma S, Guzelian PS. Identification of the fetal liver cytochrome CYP3A7 in human endometrium and placenta. J Clin Invest. 1993;92:1018–24.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Shuster DL, Bammler TK, Beyer RP, Macdonald JW, Tsai JM, Farin FM, et al. Gestational age-dependent changes in gene expression of metabolic enzymes and transporters in pregnant mice. Drug Metab Dispos. 2013;41:332–42.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Liebes L, Mendoza S, Lee JD, Dancis J. Further observations on zidovudine transfer and metabolism by human placenta. AIDS. 1993;7:590–2.PubMedCrossRefGoogle Scholar
  116. 116.
    Dancis J, Lee JD, Mendoza S, Liebes L. Transfer and metabolism of dideoxyinosine by the perfused human placenta. J Acquir Immune Defic Syndr. 1993;6:2–6.PubMedGoogle Scholar
  117. 117.
    Pienimäki P, Lampela E, Hakkola J, Arvela P, Raunio H, Vähäkangas K. Pharmacokinetics of oxcarbazepine and carbamazepine in human placenta. Epilepsia. 1997;38:309–16.PubMedCrossRefGoogle Scholar
  118. 118.
    Myllynen P, Pienimäki P, Raunio H, Vähäkangas K. Microsomal metabolism of carbamazepine and oxcarbazepine in liver and placenta. Hum Exp Toxicol. 1998;17:668–76.PubMedCrossRefGoogle Scholar
  119. 119.
    Zharikova OL, Fokina VM, Nanovskaya TN, Hill RA, Mattison DR, Hankins GD, et al. Identification of the major human hepatic and placental enzymes responsible for the biotransformation of glyburide. Biochem Pharmacol. 2009;78:1483–90.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Deshmukh SV, Nanovskaya TN, Ahmed MS. Aromatase is the major enzyme metabolizing buprenorphine in human placenta. J Pharmacol Exp Ther. 2003;306:1099–105.PubMedCrossRefGoogle Scholar
  121. 121.
    Nanovskaya TN, Deshmukh SV, Nekhayeva IA, Zharikova OL, Hankins GD, Ahmed MS. Methadone metabolism by human placenta. Biochem Pharmacol. 2004;68:583–91.PubMedCrossRefGoogle Scholar
  122. 122.
    Schenker S, Yang Y, Mattiuz E, Tatum D, Lee M. Olanzapine transfer by human placenta. Clin Exp Pharmacol Physiol. 1999;26:691–7.PubMedCrossRefGoogle Scholar
  123. 123.
    Collier AC, Keelan JA, Van Zijl PE, Paxton JW, Mitchell MD, Tingle MD. Human placental glucuronidation and transport of 3'azido-3′-deoxythymidine and uridine diphosphate glucuronic acid. Drug Metab Dispos. 2004;32:813–20.PubMedCrossRefGoogle Scholar
  124. 124.
    Pasanen M, Pelkonen O. The expression and environmental regulation of P450 enzymes in human placenta. Crit Rev Toxicol. 1994;24:211–29.PubMedCrossRefGoogle Scholar
  125. 125.
    Stejskalova L, Vecerova L, Perez LM, Vrzal R, Dvorak Z, Nachtigal P, et al. Aryl hydrocarbon receptor and aryl hydrocarbon nuclear translocator expression in human and rat placentas and transcription activity in human trophoblast cultures. Toxicol Sci. 2011;123:26–36.PubMedCrossRefGoogle Scholar
  126. 126.
    Levy G. Pharmacokinetics of fetal and neonatal exposure to drugs. Obstet Gynecol. 1981;58(5 Suppl):9s–16s.PubMedGoogle Scholar
  127. 127.
    Tomson G, Garle RI, Thalme B, Nisell H, Nylund L, Rane A. Maternal kinetics and transplacental passage of pethidine during labour. Br J Clin Pharmacol. 1982;13:653–9.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Rubinchik-Stern M, Shmuel M, Bar J, Eyal S, Kovo M. Maternal-fetal transfer of indocyanine green across the perfused human placenta. Reprod Toxicol. 2016;62:100–5.PubMedCrossRefGoogle Scholar
  129. 129.
    Cool DR, Liebach FH, Ganapathy V. Interaction of fluoxetine with the human placental serotonin transporter. Biochem Pharmacol. 1990;40:2161–7.PubMedCrossRefGoogle Scholar
  130. 130.
    Jayanthi LD, Vargas G, DeFelice LJ. Characterization of cocaine and antidepressant-sensitive norepinephrine transporters in rat placental trophoblasts. Br J Pharmacol. 2002;135:1927–34.PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Lahjouji K, Elimrani I, Lafond J, Leduc L, Qureshi IA, Mitchell GA. L-Carnitine transport in human placental brush-border membranes is mediated by the sodium-dependent organic cation transporter OCTN2. Am J Physiol Cell Physiol. 2004;287:C263–9.PubMedCrossRefGoogle Scholar
  132. 132.
    Wu SP, Shyu MK, Liou HH, Gau CS, Lin CJ. Interaction between anticonvulsants and human placental carnitine transporter. Epilepsia. 2004;45:204–10.PubMedCrossRefGoogle Scholar
  133. 133.
    Hirano T, Yasuda S, Osaka Y, Asari M, Kobayashi M, Itagaki S, et al. The inhibitory effects of fluoroquinolones on L-carnitine transport in placental cell line BeWo. Int J Pharm. 2008;351:113–8.PubMedCrossRefGoogle Scholar
  134. 134.
    Fathe K, Palacios A, Finnell RH. Brief report novel mechanism for valproate-induced teratogenicity. Birth Defects Res A Clin Mol Teratol. 2014;100:592–7.PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Keating E, Goncalves P, Campos I, Costa F, Martel F. Folic acid uptake by the human syncytiotrophoblast: interference by pharmacotherapy, drugs of abuse and pathological conditions. Reprod Toxicol. 2009;28:511–20.PubMedCrossRefGoogle Scholar
  136. 136.
    Acevedo CG, Rojas S, Bravo I. L-arginine transport at the fetal side of human placenta: effect of aspirin in pregnancy. Exp Physiol. 1999;84:1127–36.PubMedCrossRefGoogle Scholar
  137. 137.
    Williams JB, Mallorga PJ, Conn PJ, Pettibone DJ, Sur C. Effects of typical and atypical antipsychotics on human glycine transporters. Schizophr Res. 2004;71:103–12.PubMedCrossRefGoogle Scholar
  138. 138.
    He B, Zhang N, Zhao R. Dexamethasone downregulates SLC7A5 expression and promotes cell cycle arrest, autophagy and apoptosis in BeWo cells. J Cell Physiol. 2016;231:233–42.PubMedCrossRefGoogle Scholar
  139. 139.
    Kingdom JC, Drewlo S. Is heparin a placental anticoagulant in high-risk pregnancies? Blood. 2011;118:4780–8.PubMedCrossRefGoogle Scholar
  140. 140.
    Schwarz EB, Maselli J, Norton M, Gonzales R. Prescription of teratogenic medications in United States ambulatory practices. Am J Med. 2005;118:1240–9.PubMedCrossRefGoogle Scholar
  141. 141.
    Tomson T, Battino D. Teratogenic effects of antiepileptic drugs. Lancet Neurol. 2012;11:803–13.PubMedCrossRefGoogle Scholar
  142. 142.
    Tomson T, Battino D, Bonizzoni E, Craig J, Lindhout D, Perucca E, et al. Dose-dependent teratogenicity of valproate in mono- and polytherapy: an observational study. Neurology. 2015;85:866–72.PubMedCrossRefGoogle Scholar
  143. 143.
    Tomson T, Battino D, Bonizzoni E, Craig J, Lindhout D, Sabers A, et al. Dose-dependent risk of malformations with antiepileptic drugs: an analysis of data from the EURAP epilepsy and pregnancy registry. Lancet Neurol. 2011;10:609–17.PubMedCrossRefGoogle Scholar
  144. 144.
    Meador KJ, Baker GA, Browning N, Clayton-Smith J, Combs-Cantrell DT, Cohen M, et al. Cognitive function at 3 years of age after fetal exposure to antiepileptic drugs. N Engl J Med. 2009;360:1597–605.PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Meador KJ, Baker GA, Browning N, Cohen MJ, Bromley RL, Clayton-Smith J, et al. Fetal antiepileptic drug exposure and cognitive outcomes at age 6 years (NEAD study): a prospective observational study. Lancet Neurol. 2013;12:244–52.PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Christensen J, Grønborg TK, Sørensen MJ, Schendel D, Parner ET, Pedersen LH, et al. Prenatal valproate exposure and risk of autism spectrum disorders and childhood autism. JAMA. 2013;309:1696–703.PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Wood AG, Nadebaum C, Anderson V, Reutens D, Barton S, O'Brien TJ, et al. Prospective assessment of autism traits in children exposed to antiepileptic drugs during pregnancy. Epilepsia. 2015;56:1047–55.PubMedCrossRefGoogle Scholar
  148. 148.
    Cohen MJ, Meador KJ, Browning N, May R, Baker GA, Clayton-Smith J, et al. Fetal antiepileptic drug exposure: Adaptive and emotional/behavioral functioning at age 6 years. Epilepsy Behav. 2013;29:308–15.PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Nakamura H, Ushigome F, Koyabu N, Satoh S, Tsukimori K, Nakano H, et al. Proton gradient-dependent transport of valproic acid in human placental brush-border membrane vesicles. Pharm Res. 2002;19:154–61.PubMedCrossRefGoogle Scholar
  150. 150.
    Utoguchi N, Audus KL. Carrier-mediated transport of valproic acid in BeWo cells, a human trophoblast cell line. Int J Pharm. 2000;195:115–24.PubMedCrossRefGoogle Scholar
  151. 151.
    Furugen A, Ishiguro Y, Kobayashi M, Narumi K, Nishimura A, Hirano T, et al. Involvement of l-type amino acid transporter 1 in the transport of gabapentin into human placental choriocarcinoma cells. Reprod Toxicol. 2017;67:48–55.PubMedCrossRefGoogle Scholar
  152. 152.
    Ohman I, Vitols S, Tomson T. Pharmacokinetics of gabapentin during delivery, in the neonatal period, and lactation: Does a fetal accumulation occur during pregnancy? Epilepsia. 2005;46:1621–4.PubMedCrossRefGoogle Scholar
  153. 153.
    Rubinchik-Stern M, Shmuel M, Eyal S. Antiepileptic drugs alter the expression of placental carriers: an in vitro study in a human placental cell line. Epilepsia. 2015;56:1023–32.PubMedCrossRefGoogle Scholar
  154. 154.
    Meir M, Bishara A, Mann A, Udi S, Portnoy E, Shmuel M, et al. Effects of valproic acid on the placental barrier in the pregnant mouse: optical imaging and transporter expression studies. Epilepsia. 2016;57:e108–12.PubMedCrossRefGoogle Scholar
  155. 155.
    Ohashi R, Tamai I, Yabuuchi H, Nezu JI, Oku A, Sai Y, et al. Na(+)-dependent carnitine transport by organic cation transporter (OCTN2): its pharmacological and toxicological relevance. J Pharmacol Exp Ther. 1999;291:778–84.PubMedGoogle Scholar
  156. 156.
    Asadi-Pooya AA, Mintzer S, Sperling MR. Nutritional supplements, foods, and epilepsy: is there a relationship? Epilepsia. 2008;49:1819–27.PubMedCrossRefGoogle Scholar
  157. 157.
    Roberts D, Brown J, Medley N, Dalziel SR. Antenatal corticosteroids for accelerating fetal lung maturation for women at risk of preterm birth. Cochrane Database Syst Rev. 2017;3:Cd004454.PubMedGoogle Scholar
  158. 158.
    Walker N, Filis P, Soffientini U, Bellingham M, O'Shaughnessy PJ, Fowler PA. Placental transporter localization and expression in the human: the importance of species, sex, and gestational age differencesdagger. Biol Reprod. 2017;96:733–42.PubMedPubMedCentralCrossRefGoogle Scholar
  159. 159.
    Kalabis GM, Petropoulos S, Gibb W, Matthews SG. Multidrug resistance phosphoglycoprotein (ABCB1) expression in the guinea pig placenta: developmental changes and regulation by betamethasone. Can J Physiol Pharmacol. 2009;87:973–8.PubMedCrossRefGoogle Scholar
  160. 160.
    Petropoulos S, Gibb W, Matthews SG. Effect of glucocorticoids on regulation of placental multidrug resistance phosphoglycoprotein (P-gp) in the mouse. Placenta. 2010;31:803–10.PubMedCrossRefGoogle Scholar
  161. 161.
    Salje K, Lederer K, Oswald S, Dazert E, Warzok R, Siegmund W. Effects of rifampicin, dexamethasone, St. John’s Wort and thyroxine on maternal and foetal expression of Abcb1 and organ distribution of talinolol in pregnant rats. Basic Clin Pharmacol Toxicol. 2012;111:99–105.PubMedGoogle Scholar
  162. 162.
    Manceau S, Giraud C, Decleves X, Scherrmann JM, Artiguebieille F, Goffinet F, et al. ABC drug transporter and nuclear receptor expression in human cytotrophoblasts: influence of spontaneous syncytialization and induction by glucocorticoids. Placenta. 2012;33:927–32.PubMedCrossRefGoogle Scholar
  163. 163.
    Hodyl NA, Stark MJ, Butler M, Clifton VL. Placental P-glycoprotein is unaffected by timing of antenatal glucocorticoid therapy but reduced in SGA preterm infants. Placenta. 2013;34:325–30.PubMedCrossRefGoogle Scholar
  164. 164.
    Petropoulos S, Gibb W, Matthews SG. Glucocorticoid regulation of placental breast cancer resistance protein (Bcrp1) in the mouse. Reprod Sci. 2011;18:631–9.PubMedCrossRefGoogle Scholar
  165. 165.
    Paakki P, Kirkinen P, Helin H, Pelkonen O, Raunio H, Pasanen M. Antepartum glucocorticoid therapy suppresses human placental xenobiotic and steroid metabolizing enzymes. Placenta. 2000;21:241–6.PubMedCrossRefGoogle Scholar
  166. 166.
    Audette MC, Challis JR, Jones RL, Sibley CP, Matthews SG. Synthetic glucocorticoid reduces human placental system a transport in women treated with antenatal therapy. J Clin Endocrinol Metab. 2014;99:E2226–33.PubMedCrossRefGoogle Scholar
  167. 167.
    Günthard HF, Saag MS, Benson CA, del Rio C, Eron JJ, Gallant JE, et al. Antiretroviral drugs for treatment and prevention of HIV infection in adults: 2016 recommendations of the international antiviral society–USA panel. JAMA. 2016;316:191–210.PubMedPubMedCentralCrossRefGoogle Scholar
  168. 168.
    McCormack SA, Best BM. Protecting the fetus against HIV infection: a systematic review of placental transfer of antiretrovirals. Clin Pharmacokinet. 2014;53:989–1004.PubMedPubMedCentralCrossRefGoogle Scholar
  169. 169.
    Beghin D, Forestier F, Noel-Hudson MS, Gavard L, Guibourdenche J, Farinotti R, et al. Modulation of endocrine and transport functions in human trophoblasts by saquinavir and nelfinavir. Eur J Obstet Gynecol Reprod Biol. 2010;152:55–9.PubMedCrossRefGoogle Scholar
  170. 170.
    Camus M, Deloménie C, Didier N, Faye A, Gil S, Dauge MC, et al. Increased expression of MDR1 mRNAs and P-glycoprotein in placentas from HIV-1 infected women. Placenta. 2006;27:699–706.PubMedCrossRefGoogle Scholar
  171. 171.
    Zoeller BB. Treatment of fetal supraventricular tachycardia. Curr Treat Options Cardiovasc Med. 2017;19:7.PubMedCrossRefGoogle Scholar
  172. 172.
    Ilekis JV, Tsilou E, Fisher S, Abrahams VM, Soares MJ, Cross JC, et al. Placental origins of adverse pregnancy outcomes: potential molecular targets: an Executive Workshop Summary of the Eunice Kennedy Shriver National Institute of Child Health and Human Development. Am J Obstet Gynecol. 2016;215(1 Suppl):S1–s46.PubMedPubMedCentralCrossRefGoogle Scholar
  173. 173.
    Tomson T, Marson A, Boon P, Canevini MP, Covanis A, Gaily E, et al. Valproate in the treatment of epilepsy in girls and women of childbearing potential. Epilepsia. 2015;56:1006–19.PubMedCrossRefGoogle Scholar
  174. 174.
    Fowler DW, Eadie MJ, Dickinson RG. Transplacental transfer and biotransformation studies of valproic acid and its glucuronide(s) in the perfused human placenta. J Pharmacol Exp Ther. 1989;249:318–23.PubMedGoogle Scholar
  175. 175.
    Nau H. Teratogenic valproic acid concentrations: infusion by implanted minipumps vs conventional injection regimen in the mouse. Toxicol Appl Pharmacol. 1985;80:243–50.PubMedCrossRefGoogle Scholar
  176. 176.
    Eskandari S, Varshosaz J, Minaiyan M, Tabbakhian M. Brain delivery of valproic acid via intranasal administration of nanostructured lipid carriers: in vivo pharmacodynamic studies using rat electroshock model. Int J Nanomedicine. 2011;6:363–71.PubMedPubMedCentralGoogle Scholar
  177. 177.
    Bishara A, Meir M, Portnoy E, Shmuel M, Eyal S. Near infrared imaging of indocyanine green distribution in pregnant mice and effects of concomitant medications. Mol Pharm. 2015;12:3351–7.PubMedCrossRefGoogle Scholar
  178. 178.
    Kaitu'u-Lino TJ, Pattison S, Ye L, Tuohey L, Sluka P, MacDiarmid J, et al. Targeted nanoparticle delivery of doxorubicin into placental tissues to treat ectopic pregnancies. Endocrinology. 2013;154:911–9.PubMedCrossRefGoogle Scholar
  179. 179.
    Blundell C, Tess ER, Schanzer ASR, Coutifaris C, Su EJ, Parry S, et al. A microphysiological model of the human placental barrier. Lab Chip. 2016;16:3065–73.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute for Drug Research, School of PharmacyThe Hebrew University of JerusalemJerusalemIsrael

Personalised recommendations