Pharmaceutical Research

, 35:76 | Cite as

Taribavirin and 5-Fluorouracil-Loaded Pegylated-Lipid Nanoparticle Synthesis, p38 Docking, and Antiproliferative Effects on MCF-7 Breast Cancer

  • Ahmed A. Abd-Rabou
  • Dhruba J. Bharali
  • Shaker A. Mousa
Research Paper

Abstract

Purpose

Breast cancer is the second most common cause of mortality in women in the United States. Targeted delivery of antitumor breast cancer drugs as a drug-delivery strategy may allow direct delivery into the tumor. Currently, chemotherapy is one of the principle strategies for cancer treatment, but it can have toxic side effects. Nanotechnology attempts to resolve these challenges by loading drugs in nanoparticles, such as solid lipid nanoparticles (SLN). In response to the breast cancer drug 5-fluorouracil (5-FU), p38MAPK signaling has been investigated since the 1990s. Ribavirin, a nucleotide derivative, inhibits p38MAPK in infected hepatocytes. A ribavirin prodrug, taribavirin (TBV), was recently synthesized to concentrate in the liver and have minimal concentration in red blood cells.

Methods

In this study, TBV and 5-FU-pegylated SLNs were prepared and characterized. The in vitro cytotoxicity was evaluated against MCF-7 breast cancer cells. Using molecular docking experiments, 5-FU and TBV were docked on p38MAPK protein.

Results

The TBV nanoformulation had the highest cytotoxic effects, achieving IC50 = 0.690 μM after 24 h, compared with free TBV, which also achieved a good cytotoxic effect (IC50 = 0.756 μM). However, there was a detectable cytotoxic effect and an undetectable IC50 of 5-FU nanoparticles and free 5-FU on MCF-7 cells.

Conclusions

The effect of TBV nanoparticles on MCF-7 cells may be due to its inhibitory effect against p38MAPK protein, where it fits inside the active pocket site of the p38 protein molecular surface, with a minimum binding affinity of −5.5 kcal/mol (rmsd of 1.07), and it formed strong hydrogen bonds with amino acids ASP’168, ILE’166, HIS’148, and ILE’147. Further studies are warranted to investigate the mechanistic details of the proposed approach.

KEY WORDS

5-fluorouracil breast cancer solid lipid nanoparticles taribavirin 

References

  1. 1.
    Kotepui M. Diet and risk of breast cancer. Contemp Oncol (Pozn). 2016;20:13–9.Google Scholar
  2. 2.
    Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin. 2016;66:7–30.CrossRefPubMedGoogle Scholar
  3. 3.
    Muller RH, Mader K, Gohla S. Solid lipid nanoparticles (SLN) for controlled drug delivery—a review of the state of the art. Eur J Pharm Biopharm. 2000;50:161–77.CrossRefPubMedGoogle Scholar
  4. 4.
    Kabanov AV, Gendelman HE. Nanomedicine in the diagnosis and therapy of neurodegenerative disorders. Prog Polym Sci. 2007;32:1054–82.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Park JH, Lee S, Kim JH, Park K, Kim K, Kwon IC. Polymeric nanomedicine for cancer therapy. Prog Polym Sci. 2008;33:113–37.CrossRefGoogle Scholar
  6. 6.
    Sahoo SK, Parveen S, Panda JJ. The present and future of nanotechnology in human health care. Nanomed Nanotechnol Biol Med. 2007;3:20–31.CrossRefGoogle Scholar
  7. 7.
    Sumer B, Gao J. Theranostic nanomedicine for cancer. Nanomedicine (Lond). 2008;3:137–40.CrossRefGoogle Scholar
  8. 8.
    Suchaoin W, Bernkop-Schnurch A. Nanocarriers protecting toward an intestinal pre-uptake metabolism. Nanomedicine (Lond). 2017;12:255–69.CrossRefGoogle Scholar
  9. 9.
    Abd-Rabou AA, Ahmed HH. CS-PEG decorated PLGA nano-prototype for delivery of bioactive compounds: a novel approach for induction of apoptosis in HepG2 cell line. Adv Med Sci. 2017;62:357–67.CrossRefPubMedGoogle Scholar
  10. 10.
    Abd-Rabou AA, Zohier KMA, Kishta MS, Shalby AB, Ezzo MI. Nano-micelle of moringa oleifera seed oil triggers mitochondrial cancer cell apoptosis. Asian Pac J Cancer Prev. 2016;17:4929–33.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Bikiaris D, Karavelidis V, Karavas E. Novel biodegradable polyesters. Synthesis and application as drug carriers for the preparation of raloxifene HCl loaded nanoparticles. Molecules. 2009;14:2410–30.CrossRefPubMedGoogle Scholar
  12. 12.
    Longley DB, Harkin DP, Johnston PG. 5-fluorouracil: mechanisms of action and clinical strategies. Nat Rev Cancer. 2003;3:330–8.CrossRefPubMedGoogle Scholar
  13. 13.
    Wu Y, Hiwasa T, Isogai E, Sonoda T, Kita K, Chen Z, et al. Activation of map kinases by 5-fluorouracil in a 5-fluorouracil-resistant variant human cell line derived from a KT breast cancer cell line. Int J Oncol. 1998;13:1241–5.PubMedGoogle Scholar
  14. 14.
    García-Cano J, Roche O, Cimas FJ, Pascual-Serra R, Ortega-Muelas M, Fernández-Aroca DM, et al. p38MAPK and chemotherapy: we always need to hear both sides of the story. Front Cell Dev Biol. 2016;4:69.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    de la Cruz-Morcillo MA, Valero MLL, Callejas-Valera JL, Arias-Gonzalez L, Melgar-Rojas P, Galan-Moya EM, et al. P38MAPK is a major determinant of the balance between apoptosis and autophagy triggered by 5-fluorouracil: implication in resistance. Oncogene. 2012;31:1073–85.CrossRefPubMedGoogle Scholar
  16. 16.
    Yang XC, Wang JC, Dai JB, Shao JJ, Ma J, Chen C, et al. Autophagy protects against dasatinib-induced hepatotoxicity via p38 signaling. Oncotarget. 2015;6:6203–17.PubMedPubMedCentralGoogle Scholar
  17. 17.
    Matsunaga A, Ishii Y, Tsuruta M, Okabayashi K, Hasegawa H, Kitagawa Y. Inhibition of heat shock protein 27 phosphorylation promotes sensitivity to 5-fluorouracil in colorectal cancer cells. Oncol Lett. 2014;8:2496–500.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    He SF, Wang W, Ren H, Zhao LJ, Qi ZT. Interferon alpha and ribavirin collaboratively regulate p38 mitogen-activated protein kinase signaling in hepatoma cells. Cytokine. 2013;61:801–7.CrossRefPubMedGoogle Scholar
  19. 19.
    Koul HK, Pal M, Koul S. Role of p38 MAP kinase signal transduction in solid tumors. Genes Cancer. 2013;4:342–59.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Bundgaard H. Formation of prodrugs of amines, amides, ureides, and imides. Methods Enzymol. 1985;112:347–59.CrossRefPubMedGoogle Scholar
  21. 21.
    Abo-zeid Y, Irving W, Thomson B, Mantovani G, Garnett M. P19: ribavirin-boronic acid loaded nanoparticles: a possible route to improve hepatitis C treatment. J Viral Hepat. 2013;20:26–7.CrossRefGoogle Scholar
  22. 22.
    Puri A, Loomis K, Smith B, Lee JH, Yavlovich A, Heldman E, et al. Lipid-based nanoparticles as pharmaceutical drug carriers: from concepts to clinic. Crit Rev Ther Drug Carrier Syst. 2009;26:523–80.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Feng H, Zhu Y, Fu Z, Li D. Preparation, characterization, and in vivo study of rhein solid lipid nanoparticles for oral delivery. Chem Biol Drug Des. 2017.Google Scholar
  24. 24.
    Kumar MNVR. Nano and microparticles as controlled drug delivery devices. J Pharm Pharm Sci. 2000;3:234–58.Google Scholar
  25. 25.
    Vaizoglu MO, Speiser PP. Pharmacosomes—a novel drug delivery system. Acta Pharm Suec. 1986;23:163–72.PubMedGoogle Scholar
  26. 26.
    MacGregor KJ, Embleton JK, Lacy JE, Perry EA, Solomon LJ, Seager H, et al. Influence of lipolysis on drug absorption from the gastro-intestinal tract. Adv Drug Deliv Rev. 1997;25:33–46.CrossRefGoogle Scholar
  27. 27.
    Al-Qushawi A, Rassouli A, Atyabi F, Peighambari SM, Esfandyari-Manesh M, Shams GR, et al. Preparation and characterization of three tilmicosin-loaded lipid nanoparticles: physicochemical properties and in-vitro antibacterial activities. Iran J Pharm Res. 2016;15:663–76.PubMedPubMedCentralGoogle Scholar
  28. 28.
    Roese E, Bunjes H. Drug release studies from lipid nanoparticles in physiological media by a new DSC method. J Control Release. 2017;256:92–100.CrossRefPubMedGoogle Scholar
  29. 29.
    Westesen K, Siekmann B, Koch MHJ. Investigations on the physical state of lipid nanoparticles by synchrotron radiation X-ray diffraction. Int J Pharm. 1993;93:189–99.CrossRefGoogle Scholar
  30. 30.
    zur Muhlen A, Schwarz C, Mehnert W. Solid lipid nanoparticles (SLN) for controlled drug delivery--drug release and release mechanism. Eur J Pharm Biopharm. 1998;45:149–55.CrossRefPubMedGoogle Scholar
  31. 31.
    zur Muhlen A, zur Muhlen E, Niehus H, Mehnert W. Atomic force microscopy studies of solid lipid nanoparticles. Pharm Res. 1996;13:1411–6.CrossRefPubMedGoogle Scholar
  32. 32.
    Hu FQ, Meng P, Dai YQ, Du YZ, You J, Wei XH, et al. Pegylated chitosan-based polymer micelle as an intracellular delivery carrier for anti-tumor targeting therapy. Eur J Pharm Biopharm. 2008;70:749–57.CrossRefPubMedGoogle Scholar
  33. 33.
    Kakkar D, Dumoga S, Kumar R, Chuttani K, Mishra AK. Pegylated solid lipid nanoparticles: design, methotrexate loading and biological evaluation in animal models. Med Chem Comm. 2015;6:1452–63.CrossRefGoogle Scholar
  34. 34.
    van Meerloo J, Kaspers GJ, Cloos J. Cell sensitivity assays: the MTT assay. Methods Mol Biol. 2011;731:237–45.CrossRefPubMedGoogle Scholar
  35. 35.
    Trott O, Olson AJ. Autodock vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010;31:455–61.PubMedPubMedCentralGoogle Scholar
  36. 36.
    Eatemadi A, Daraee H, Karimkhanloo H, Kouhi M, Zarghami N, Akbarzadeh A, et al. Carbon nanotubes: properties, synthesis, purification, and medical applications. Nanoscale Res Lett. 2014;9:393.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    El-Hammadi MM, Delgado AV, Melguizo C, Prados JC, Arias JL. Folic acid-decorated and pegylated PLGA nanoparticles for improving the antitumour activity of 5-fluorouracil. Int J Pharm. 2017;516:61–70.CrossRefPubMedGoogle Scholar
  38. 38.
    Ghose AK, Viswanadhan VN, Wendoloski JJ. A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quantitative characterization of known drug databases. J Comb Chem. 1999;1:55–68.CrossRefPubMedGoogle Scholar
  39. 39.
    De Angelis PM, Svendsrud DH, Kravik KL, Stokke T. Cellular response to 5-fluorouracil (5-FU) in 5-FU-resistant colon cancer cell lines during treatment and recovery. Mol Cancer. 2006;5:20.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    He YC, Chen JW, Cao J, Pan DY, Qiao JG. Toxicities and therapeutic effect of 5-fluorouracil controlled release implant on tumor-bearing rats. World J Gastroenterol. 2003;9:1795–8.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Fournier E, Passirani C, Montero-Menei C, Colin N, Breton P, Sagodira S, et al. Therapeutic effectiveness of novel 5-fluorouracil-loaded poly(methylidene malonate 2.1.2)-based microspheres on F98 glioma-bearing rats. Cancer. 2003;97:2822–9.CrossRefPubMedGoogle Scholar
  42. 42.
    Duvvuri S, Gaurav Janoria K, Mitra AK. Effect of polymer blending on the release of ganciclovir from PLGA microspheres. Pharm Res. 2006;23:215–23.CrossRefPubMedGoogle Scholar
  43. 43.
    Yoo JY, Kim JM, Khang G, Kim MS, Cho SH, Lee HB, et al. Effect of lactide/glycolide monomers on release behaviors of gentamicin sulfate-loaded PLGA discs. Int J Pharm. 2004;276:1–9.CrossRefPubMedGoogle Scholar
  44. 44.
    Yoshikawa R, Kusunoki M, Yanagi H, Noda M, Furuyama JI, Yamamura T, et al. Dual antitumor effects of 5-fluorouracil on the cell cycle in colorectal carcinoma cells: a novel target mechanism concept for pharmacokinetic modulating chemotherapy. Cancer Res. 2001;61:1029–37.PubMedGoogle Scholar
  45. 45.
    Nair KL, Jagadeeshan S, Nair SA, Kumar GS. Biological evaluation of 5-fluorouracil nanoparticles for cancer chemotherapy and its dependence on the carrier, PLGA. Int J Nanomed. 2011;6:1685–97.Google Scholar
  46. 46.
    Fukumura D, Jain RK. Tumor microvasculature and microenvironment: targets for anti-angiogenesis and normalization. Microvasc Res. 2007;74:72–84.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Maeda H, Wu J, Sawa T, Matsumura Y, Hori K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release. 2000;65:271–84.CrossRefPubMedGoogle Scholar
  48. 48.
    Eatemadi A, Darabi M, Afraidooni L, Zarghami N, Daraee H, Eskandari L, et al. Comparison, synthesis and evaluation of anticancer drug-loaded polymeric nanoparticles on breast cancer cell lines. Artif Cells Nanomed Biotechnol. 2016;44:1008–17.CrossRefPubMedGoogle Scholar
  49. 49.
    Ishihara T, Kaneko K, Ishihara T, Mizushima T. Development of biodegradable nanoparticles for liver-specific ribavirin delivery. J Pharm Sci. 2014;103:4005–11.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Ahmed A. Abd-Rabou
    • 1
  • Dhruba J. Bharali
    • 2
  • Shaker A. Mousa
    • 2
  1. 1.Hormones Department, Medical Research DivisionNational Research CenterCairoEgypt
  2. 2.The Pharmaceutical Research InstituteAlbany College of Pharmacy and Health SciencesRensselaerUSA

Personalised recommendations