Skip to main content

Advertisement

Log in

Phase Behavior of Ritonavir Amorphous Solid Dispersions during Hydration and Dissolution

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

The aim of this research was to study the interplay of solid and solution state phase transformations during the dissolution of ritonavir (RTV) amorphous solid dispersions (ASDs).

Methods

RTV ASDs with polyvinylpyrrolidone (PVP), polyvinylpyrrolidone vinyl acetate (PVPVA) and hydroxypropyl methylcellulose acetate succinate (HPMCAS) were prepared at 10–50% drug loading by solvent evaporation. The miscibility of RTV ASDs was studied before and after exposure to 97% relative humidity (RH). Non-sink dissolution studies were performed on fresh and moisture-exposed ASDs. RTV and polymer release were monitored using ultraviolet-visible spectroscopy. Techniques including fluorescence spectroscopy, confocal imaging, scanning electron microscopy (SEM), atomic force microscopy (AFM), differential scanning calorimetry (DSC) and nanoparticle tracking analysis (NTA) were utilized to monitor solid and the solution state phase transformations.

Results

All RTV-PVP and RTV-PVPVA ASDs underwent moisture-induced amorphous-amorphous phase separation (AAPS) on high RH storage whereas RTV-HPMCAS ASDs remained miscible. Non-sink dissolution of PVP- and PVPVA-based ASDs at low drug loadings led to rapid RTV and polymer release resulting in concentrations in excess of amorphous solubility, liquid-liquid phase separation (LLPS) and amorphous nanodroplet formation. High drug loading PVP- and PVPVA-based ASDs did not exhibit LLPS upon dissolution as a consequence of extensive AAPS in the hydrated ASD matrix. All RTV-HPMCAS ASDs led to LLPS upon dissolution.

Conclusions

RTV ASD dissolution is governed by a competition between the dissolution rate and the rate of phase separation in the hydrated ASD matrix. LLPS was observed for ASDs where the drug release was polymer controlled and only ASDs that remained miscible during the initial phase of dissolution led to LLPS. Techniques such as fluorescence spectroscopy, confocal imaging and SEM were useful in understanding the phase behavior of ASDs upon hydration and dissolution and were helpful in elucidating the mechanism of generation of amorphous nanodroplets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

ASD:

Amorphous solid dispersion

AAPS:

Amorphous-amorphous phase separation

AFM:

Atomic force microscopy

DSC:

Differential scanning calorimetry

DL:

Drug loading

HPMCAS:

Hydroxypropyl methylcellulose acetate succinate

LLPS:

Liquid-liquid phase separation

NTA:

Nanotracking analysis

PVP:

Polyvinylpyrrolidone

PVPVA:

Polyvinylpyrrolidone vinyl acetate

RH:

Relative humidity

RTV:

Ritonavir

UV-Vis:

Ultraviolet-visible

References

  1. Di L, Fish PV, Mano T. Bridging solubility between drug discovery and development. Drug Discov Today. 2012;17(9):486–95.

    Article  CAS  Google Scholar 

  2. Lipinski CA. Poor aqueous solubility-an industry wide problem in ADME screening. Am Pharm Rev. 2002;5:82–5.

    Google Scholar 

  3. Hancock BC, Zografi G. Characteristics and significance of the amorphous state in pharmaceutical systems. J Pharm Sci. 1997;86(1):1–12.

    Article  CAS  Google Scholar 

  4. Murdande SB, Pikal MJ, Shanker RM, Bogner RH. Solubility advantage of amorphous pharmaceuticals: I. A thermodynamic analysis. J Pharm Sci. 2010;99(3):1254–64.

    Article  CAS  Google Scholar 

  5. Vasconcelos T, Sarmento B, Costa P. Solid dispersions as strategy to improve oral bioavailability of poor water soluble drugs. Drug Discov Today. 2007;12(23–24):1068–75.

    Article  CAS  Google Scholar 

  6. Rumondor AC, Marsac PJ, Stanford LA, Taylor LS. Phase behavior of poly (vinylpyrrolidone) containing amorphous solid dispersions in the presence of moisture. Mol Pharm. 2009;6(5):1492–505.

    Article  CAS  Google Scholar 

  7. Rumondor AC, Wikström H, Van Eerdenbrugh B, Taylor LS. Understanding the tendency of amorphous solid dispersions to undergo amorphous–amorphous phase separation in the presence of absorbed moisture. AAPS PharmSciTech. 2011;12(4):1209–19.

    Article  CAS  Google Scholar 

  8. Rumondor AC, Stanford LA, Taylor LS. Effects of polymer type and storage relative humidity on the kinetics of felodipine crystallization from amorphous solid dispersions. Pharm Res. 2009;26(12):2599–606.

    Article  CAS  Google Scholar 

  9. Ilevbare GA, Taylor LS. Liquid–liquid phase separation in highly supersaturated aqueous solutions of poorly water-soluble drugs: implications for solubility enhancing formulations. Cryst Growth Des. 2013;13(4):1497–509.

    Article  CAS  Google Scholar 

  10. Raina SA, Zhang GG, Alonzo DE, Wu J, Zhu D, Catron ND, et al. Enhancements and limits in drug membrane transport using supersaturated solutions of poorly water soluble drugs. J Pharm Sci. 2014;103(9):2736–48.

    Article  CAS  Google Scholar 

  11. Konno H, Handa T, Alonzo DE, Taylor LS. Effect of polymer type on the dissolution profile of amorphous solid dispersions containing felodipine. Eur J Pharm Biopharm. 2008;70(2):493–9.

    Article  CAS  Google Scholar 

  12. Alonzo DE, Gao Y, Zhou D, Mo H, Zhang GG, Taylor LS. Dissolution and precipitation behavior of amorphous solid dispersions. J Pharm Sci. 2011;100(8):3316–31.

    Article  CAS  Google Scholar 

  13. Alonzo DE, Zhang GG, Zhou D, Gao Y, Taylor LS. Understanding the behavior of amorphous pharmaceutical systems during dissolution. Pharm Res. 2010;27(4):608–18.

    Article  CAS  Google Scholar 

  14. Purohit HS, Taylor LS. Phase separation kinetics in amorphous solid dispersions upon exposure to water. Mol Pharm. 2015;12(5):1623–35.

    Article  CAS  Google Scholar 

  15. Van Eerdenbrugh B, Alonzo DE, Taylor LS. Influence of particle size on the ultraviolet spectrum of particulate-containing solutions: implications for in-situ concentration monitoring using UV/Vis fiber-optic probes. Pharm Res. 2011;28(7):1643–52.

    Article  Google Scholar 

  16. Dubois M, Gilles KA, Hamilton JK, Rebers P, Smith F. Colorimetric method for determination of sugars and related substances. Anal Chem. 1956;28(3):350–6.

    Article  CAS  Google Scholar 

  17. Levy G, Fergus D. Microdetermination of polyvinylpyrrolidone in aqueous solution and in body fluids. Anal Chem. 1953;25(9):1408–10.

    Article  CAS  Google Scholar 

  18. Raina SA, Alonzo DE, Zhang GG, Gao Y, Taylor LS. Using environment-sensitive fluorescent probes to characterize liquid-liquid phase separation in supersaturated solutions of poorly water soluble compounds. Pharm Res. 2015;32(11):3660–73.

    Article  CAS  Google Scholar 

  19. Kalyanasundaram K, Thomas J. Environmental effects on vibronic band intensities in pyrene monomer fluorescence and their application in studies of micellar systems. J Am Chem Soc. 1977;99(7):2039–44.

    Article  CAS  Google Scholar 

  20. Kalyanasundaram K, Thomas JK. Solvent-dependent fluorescence of pyrene-3-carboxaldehyde and its applications in the estimation of polarity at micelle-water interfaces. J Phys Chem. 1977;81(23):2176–80.

    Article  CAS  Google Scholar 

  21. Purohit HS, Taylor LS. Miscibility of itraconazole–hydroxypropyl methylcellulose blends: insights with high resolution analytical methodologies. Mol Pharm. 2015;12(12):4542–53.

    Article  CAS  Google Scholar 

  22. Greenspan P, Fowler SD. Spectrofluorometric studies of the lipid probe, nile red. J Lipid Res. 1985;26(7):781–9.

    CAS  PubMed  Google Scholar 

  23. Sackett DL, Wolff J. Nile red as a polarity-sensitive fluorescent probe of hydrophobic protein surfaces. Anal Biochem. 1987;167(2):228–34.

    Article  CAS  Google Scholar 

  24. Lauer ME, Siam M, Tardio J, Page S, Kindt JH, Grassmann O. Rapid assessment of homogeneity and stability of amorphous solid dispersions by atomic force microscopy—from bench to batch. Pharm Res. 2013;30(8):2010–22.

    Article  CAS  Google Scholar 

  25. Qi S, Moffat JG, Yang Z. Early stage phase separation in pharmaceutical solid dispersion thin films under high humidity: improved spatial understanding using probe-based thermal and spectroscopic nanocharacterization methods. Mol Pharm. 2013;10(3):918–30.

    Article  CAS  Google Scholar 

  26. Andronis V, Yoshioka M, Zografi G. Effects of sorbed water on the crystallization of indomethacin from the amorphous state. J Pharm Sci. 1997;86(3):346–51.

    Article  CAS  Google Scholar 

  27. Shamblin SL, Zografi G. The effects of absorbed water on the properties of amorphous mixtures containing sucrose. Pharm Res. 1999;16(7):1119–24.

    Article  CAS  Google Scholar 

  28. Marsac PJ, Rumondor AC, Nivens DE, Kestur US, Stanciu L, Taylor LS. Effect of temperature and moisture on the miscibility of amorphous dispersions of felodipine and poly (vinyl pyrrolidone). J Pharm Sci. 2010;99(1):169–85.

    Article  CAS  Google Scholar 

  29. Harmon P, Galipeau K, Xu W, Brown C, Wuelfing WP. Mechanism of dissolution-induced nanoparticle formation from a copovidone-based amorphous solid dispersion. Mol Pharm. 2016;13(5):1467–81.

    Article  CAS  Google Scholar 

  30. Zhang J, Zografi G. Water vapor absorption into amorphous sucrose-poly (vinyl pyrrolidone) and trehalose–poly (vinyl pyrrolidone) mixtures. J Pharm Sci. 2001;90(9):1375–85.

    Article  CAS  Google Scholar 

  31. Robard A, Patterson D, Delmas G. The "Δχ effect" and polystyrene-poly (vinyl methyl ether) compatibility in solution. Macromolecules. 1977;10(3):706–8.

    Article  CAS  Google Scholar 

  32. Rumondor AC, Stanford LA, Taylor LS. Effects of polymer type and storage relative humidity on the kinetics of felodipine crystallization from amorphous solid dispersions. Pharm Res. 2009;26(12):2599.

    Article  CAS  Google Scholar 

  33. Rumondor AC, Taylor LS. Effect of polymer hygroscopicity on the phase behavior of amorphous solid dispersions in the presence of moisture. Mol Pharm. 2010;7(2):477–90.

    Article  CAS  Google Scholar 

  34. Taylor LS, Zhang GG. Physical chemistry of supersaturated solutions and implications for oral absorption. Adv Drug Deliv Rev. 2016;101:122–42.

    Article  CAS  Google Scholar 

  35. Indulkar AS, Gao Y, Raina SA, Zhang GG, Taylor LS. Exploiting the phenomenon of liquid–liquid phase separation for enhanced and sustained membrane transport of a poorly water-soluble drug. Mol Pharm. 2016;13(6):2059–69.

    Article  CAS  Google Scholar 

  36. Simonelli A, Mehta S, Higuchi W. Dissolution rates of high energy polyvinylpyrrolidone (PVP)-sulfathiazole coprecipitates. J Pharm Sci. 1969;58(5):538–49.

    Article  CAS  Google Scholar 

  37. Simonelli A, Mehta S, Higuchi W. Dissolution rates of high energy sulfathiazole-povidone coprecipitates II: characterization of form of drug controlling its dissolution rate via solubility studies. J Pharm Sci. 1976;65(3):355–61.

    Article  CAS  Google Scholar 

  38. Chen Y, Wang S, Wang S, Liu C, Su C, Hageman M, et al. Initial drug dissolution from amorphous solid dispersions controlled by polymer dissolution and drug-polymer interaction. Pharm Res. 2016;33(10):2445–58.

    Article  Google Scholar 

  39. Corrigan OI. Mechanisms of dissolution of fast release solid dispersions. Drug Dev Ind Pharm. 1985;11(2–3):697–724.

    Article  CAS  Google Scholar 

  40. Tachibana T, Nakamura A. A methode for preparing an aqueous colloidal dispersion of organic materials by using water-soluble polymers: dispersion of Β-carotene by polyvinylpyrrolidone. Colloid Polym Sci. 1965;203(2):130–3.

    CAS  Google Scholar 

  41. Jackson MJ, Kestur US, Hussain MA, Taylor LS. Dissolution of danazol amorphous solid dispersions: supersaturation and phase behavior as a function of drug loading and polymer type. Mol Pharm. 2015;13(1):223–31.

    Article  Google Scholar 

  42. Noyes AA, Whitney WR. The rate of solution of solid substances in their own solutions. J Am Chem Soc. 1897;19(12):930–4.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

Financial support to HSP from Migliaccio/Pfizer graduate fellowship is greatly acknowledged. The authors would also like to thank the National Science Foundation through grant number EEC-0540855, and the National Institutes of Health through grant number R42 GM100657–03, for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lynne S. Taylor.

Electronic supplementary material

ESM 1

(DOCX 1009 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Purohit, H.S., Taylor, L.S. Phase Behavior of Ritonavir Amorphous Solid Dispersions during Hydration and Dissolution. Pharm Res 34, 2842–2861 (2017). https://doi.org/10.1007/s11095-017-2265-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-017-2265-5

Key words

Navigation