Polymer/Amorphous Salt Solid Dispersions of Ciprofloxacin



To improve the pharmaceutical properties of amorphous ciprofloxacin (CIP) succinate salts via formulation as polymer/amorphous salt solid dispersions (ASSDs).


ASSDs consisting of an amorphous CIP/succinic acid 1:1 or 2:1 salt dispersed in PVP or Soluplus were produced by spray drying and ball milling. The solid state characteristics, miscibility, stability, solubility and passive transmembrane permeability of the ASSDs were then examined.


The ASSDs had higher glass transition and crystallization temperatures than the corresponding amorphous succinate salts, and were also more stable during long-term stability studies. The results of inverse gas chromatography and thermal analysis indicated that the salts and polymers form a miscible mixture. The solubility of the pure drug in water and biorelevant media was significantly increased by all of the formulations. The permeability of the ASSDs did not differ significantly from that of the amorphous CIP succinate salts, however all samples were less permeable than the pure crystalline drug.


The formulation of amorphous CIP succinate salts as ASSDs with polymer improved their long-term stability, but did not significantly affect their solubility or permeability.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5



Amorphous solid dispersion


Amorphous salt solid dispersion


Ball milled



CS 1:1:

Ciprofloxacin hemisuccinate (ciprofloxacin/succinic acid 1:1)

CS 2:1:

Ciprofloxacin succinate (ciprofloxacin/succinic acid 2:1)




Spray dried


Parallel artificial membrane permeability assay


Physical mixture


  1. 1.

    Kawabata Y, Wada K, Nakatani M, Yamada S, Onoue S. Formulation design for poorly water-soluble drugs based on biopharmaceutics classification system: basic approaches and practical applications. Int J Pharm. 2011;420(1):1–10.

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Mesallati H, Mugheirbi NA, Tajber L. Two faces of ciprofloxacin: investigation of proton transfer in solid state transformations. Cryst Growth Des. 2016;16(11):6574–85.

    CAS  Article  Google Scholar 

  3. 3.

    Paluch KJ, McCabe T, Müller-Bunz H, Corrigan OI, Healy AM, Tajber L. Formation and physicochemical properties of crystalline and amorphous salts with different stoichiometries formed between ciprofloxacin and succinic acid. Mol Pharm. 2013;10(10):3640–54.

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Zhang C-L, Zhao F, Wang Y. Thermodynamics of the solubility of ciprofloxacin in methanol, ethanol, 1-propanol, acetone, and chloroform from 293.15 to 333.15K. J Mol Liq. 2010;156(2–3):191–3.

    CAS  Article  Google Scholar 

  5. 5.

    Zaki NM, Artursson P, Bergström CAS. A modified physiological BCS for prediction of intestinal absorption in drug discovery. Mol Pharm. 2010;7(5):1478–87.

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Yu L. Amorphous pharmaceutical solids: preparation, characterization and stabilization. Adv Drug Deliv Rev. 2001;48(1):27–42.

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Brough C, Williams RO. Amorphous solid dispersions and nano-crystal technologies for poorly water-soluble drug delivery. Int J Pharm. 2013;453(1):157–66.

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Crowley KJ, Zografi G. Water vapor absorption into amorphous hydrophobic drug/poly(vinylpyrrolidone) dispersions. J Pharm Sci. 2002;91(10):2150–65.

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Yang J, Grey K, Doney J. An improved kinetics approach to describe the physical stability of amorphous solid dispersions. Int J Pharm. 2010;384(1–2):24–31.

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Cheong H-A, Choi H-K. Enhanced percutaneous absorption of piroxicam via salt formation with ethanolamines. Pharm Res. 2002;19(9):1375–80.

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Zhang G, Zhang L, Yang D, Zhang N, He L, Du G, et al. Salt screening and characterization of ciprofloxacin. Acta Crystallogr Sect B Struct Sci Cryst Eng Mater. 2016;72(1):20–8.

    CAS  Article  Google Scholar 

  12. 12.

    Mesallati H, Umerska A, Paluch K, Tajber L. Amorphous polymeric drug salts as ionic solid dispersion forms of ciprofloxacin. Mol Pharm. 2017;14(7):2209–23.

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Djuris J, Nikolakakis I, Ibric S, Djuric Z, Kachrimanis K. Preparation of carbamazepine–Soluplus® solid dispersions by hot-melt extrusion, and prediction of drug–polymer miscibility by thermodynamic model fitting. Eur J Pharm Biopharm. 2013;84(1):228–37.

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Knapik J, Wojnarowska Z, Grzybowska K, Tajber L, Mesallati H, Paluch KJ, et al. Molecular dynamics and physical stability of amorphous nimesulide drug and its binary drug–polymer systems. Mol Pharm. 2016;13(6):1937–46.

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Patel JR, Carlton RA, Yuniatine F, Needham TE, Wu L, Vogt FG. Preparation and structural characterization of amorphous spray-dried dispersions of tenoxicam with enhanced dissolution. J Pharm Sci. 2012;101(2):641–63.

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Kitak T, Dumičić A, Planinšek O, Šibanc R, Srčič S. Determination of solubility parameters of ibuprofen and ibuprofen lysinate. Molecules. 2015;20(12):21549–68.

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Merck Millipore. Lipid-PAMPA with the MultiScreen® filter plates. Billerica, MA; 2004.

  18. 18.

    Wohnsland F, Faller B. High-throughput permeability pH profile and high-throughput alkane/water log P with artificial membranes. J Med Chem. 2001;44(6):923–30.

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Baghel S, Cathcart H, O’Reilly NJ. Polymeric amorphous solid dispersions: A review of amorphization, crystallization, stabilization, solid-state characterization, and aqueous solubilization of Biopharmaceutical Classification System class II drugs. J Pharm Sci. 2016;105(9):2527–44.

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Caron V, Hu Y, Tajber L, Erxleben A, Corrigan OI, McArdle P, et al. Amorphous solid dispersions of sulfonamide/Soluplus® and sulfonamide/PVP prepared by ball milling. AAPS PharmSciTechnol. 2013;14(1):464–74.

    CAS  Article  Google Scholar 

  21. 21.

    Dorofeev VL. The betainelike structure and infrared spectra of drugs of the fluoroquinolone group. Pharm Chem J. 2004;38(12):698–702.

    CAS  Article  Google Scholar 

  22. 22.

    Parojčić J, Stojković A, Tajber L, Grbić S, Paluch KJ, Djurić Z, et al. Biopharmaceutical characterization of ciprofloxacin HCl-ferrous sulfate interaction. J Pharm Sci. 2011;100(12):5174–84.

    Article  PubMed  Google Scholar 

  23. 23.

    Chen Y, Wang S, Wang S, Liu C, Su C, Hageman M, et al. Initial drug dissolution from amorphous solid dispersions controlled by polymer dissolution and drug-polymer interaction. Pharm Res. 2016;33(10):2445–58.

    Article  PubMed  Google Scholar 

  24. 24.

    Shalaev EY, Gatlin LA. The impact of buffer on solid-state properties and stability of freeze-dried dosage forms. In: Jameel F, Hershenson S, editors. Formulation and process development strategies for manufacturing biopharmaceuticals. 1st ed. New Jersey: Wiley; 2010. p. 508.

    Google Scholar 

  25. 25.

    Brostow W, Chiu R, Kalogeras IM, Vassilikou-Dova A. Prediction of glass transition temperatures: binary blends and copolymers. Mater Lett. 2008;62(17–18):3152–5.

    CAS  Article  Google Scholar 

  26. 26.

    Knopp MM, Tajber L, Tian Y, Olesen NE, Jones DS, Kozyra A, et al. Comparative study of different methods for the prediction of drug-polymer solubility. Mol Pharm. 2015;12(9):3408–19.

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Greenhalgh DJ, Williams AC, Timmins P, York P. Solubility parameters as predictors of miscibility in solid dispersions. J Pharm Sci. 1999;88(11):1182–90.

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Trasi NS, Boerrigter SXM, Byrn SR. Investigation of the milling-induced thermal behavior of crystalline and amorphous griseofulvin. Pharm Res. 2010;27(7):1377–89.

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Karmwar P, Graeser K, Gordon KC, Strachan CJ, Rades T. Investigation of properties and recrystallisation behaviour of amorphous indomethacin samples prepared by different methods. Int J Pharm. 2011;417(1–2):94–100.

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Ke P, Hasegawa S, Al-Obaidi H, Buckton G. Investigation of preparation methods on surface/bulk structural relaxation and glass fragility of amorphous solid dispersions. Int J Pharm. 2012;422(1–2):170–8.

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Caron V, Tajber L, Corrigan OI, Healy AM. A comparison of spray drying and milling in the production of amorphous dispersions of sulfathiazole/polyvinylpyrrolidone and sulfadimidine/polyvinylpyrrolidone. Mol Pharm Am Chem Soc. 2011;8(2):532–42.

    CAS  Article  Google Scholar 

  32. 32.

    Mafra L, Santos SM, Siegel R, Alves I, Paz FAA, Dudenko D, et al. Packing interactions in hydrated and anhydrous forms of the antibiotic ciprofloxacin: a solid-state NMR, X-ray diffraction, and computer simulation study. J Am Chem Soc. 2012;134(1):71–4.

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Li X, Zhi F, Hu Y. Investigation of excipient and processing on solid phase transformation and dissolution of ciprofloxacin. Int J Pharm. 2007;328(2):177–82.

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Sugano K. Permeability of a drug. In: Biopharmaceutics modeling and simulations: theory, practice, methods, and applications. 1st ed. New Jersey: Wiley; 2012. p. 170.

  35. 35.

    Beig A, Miller JM, Lindley D, Carr RA, Zocharski P, Agbaria R, et al. Head-to-head comparison of different solubility-enabling formulations of etoposide and their consequent solubility-permeability interplay. J Pharm Sci. 2015;104(9):2941–7.

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    Rodríguez-Ibáñez M, Sánchez-Castaño G, Montalar-Montero M, Garrigues TM, Bermejo M, Merino V. Mathematical modelling of in situ and in vitro efflux of ciprofloxacin and grepafloxacin. Int J Pharm. 2006;307(1):33–41.

    Article  PubMed  Google Scholar 

  37. 37.

    Tam KY, Avdeef A, Tsinman O, Sun N. The permeation of amphoteric drugs through artificial membranes--an in combo absorption model based on paracellular and transmembrane permeability. J Med Chem. 2010;53(1):392–401.

    CAS  Article  PubMed  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Lidia Tajber.

Electronic supplementary material


(DOCX 2514 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mesallati, H., Tajber, L. Polymer/Amorphous Salt Solid Dispersions of Ciprofloxacin. Pharm Res 34, 2425–2439 (2017). https://doi.org/10.1007/s11095-017-2250-z

Download citation


  • Ciprofloxacin
  • amorphous salt solid dispersion
  • stability
  • solubility
  • permeability