Skip to main content

Advertisement

Log in

A Functional Iron Oxide Nanoparticles Modified with PLA-PEG-DG as Tumor-Targeted MRI Contrast Agent

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Tumor targeting could greatly promote the performance of magnetic nanomaterials as MRI (Magnetic Resonance Imaging) agent for tumor diagnosis. Herein, we reported a novel magnetic nanoparticle modified with PLA (poly lactic acid)-PEG (polyethylene glycol)-DG (D-glucosamine) as Tumor-targeted MRI Contrast Agent.

Methods

In this work, we took use of the D-glucose passive targeting on tumor cells, combining it on PLA-PEG through amide reaction, and then wrapped the PLA-PEG-DG up to the Fe3O4@OA NPs. The stability and anti phagocytosis of Fe3O4@OA@PLA-PEG-DG was tested in vitro; the MRI efficiency and toxicity was also detected in vivo.

Results

These functional magnetic nanoparticles demonstrated good biocompatibility and stability both in vitro and in vivo. Cell experiments showed that Fe3O4@OA@PLA-PEG-DG nanoparticles exist good anti phagocytosis and high targetability. In vivo MRI images showed that the contrast effect of Fe3O4@OA@PLA-PEG-DG nanoparticles prevailed over the commercial non tumor-targeting magnetic nanomaterials MRI agent at a relatively low dose.

Conclusions

The DG can validly enhance the tumor-targetting effect of Fe3O4@OA@PLA-PEG nanoparticle. Maybe MRI agents with DG can hold promise as tumor-targetting development in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

18F–FDG:

[18F] fluoro-2-deoxy-D-glucose

DG:

D-glucosamine

GLUT1:

Glucose transporters 1

NPs:

Nanoparticles

PEG:

Polyethylene glycol

PLA:

Poly lactic acid

SPIONs:

Superparamagnetic iron oxide nanoparticles

References

  1. Emmenegger U, Kerbel RS. CANCER chemotherapy counteracted. Nature. 2010;468(7324):637–8.

    Article  CAS  Google Scholar 

  2. Perrino C, Schiattarella GG, Magliulo F, Ilardi F, Carotenuto G, Gargiulo G, Serino F, Ferrone M, Scudiero F, Carbone A, Trimarco B, Esposito G. Cardiac side effects of chemotherapy: state of art and strategies for a correct management. Curr Vasc Pharmacol. 2014;12(1):106–16.

    Article  CAS  Google Scholar 

  3. Kim J, Sung N, Raghavendran HB, Yoon Y, Song B, Choi J, Yoo Y, Byun M, Hwang Y, Lee J. Gamma irradiation reduces the immunological toxicity of doxorubicin, anticancer drug. Radiat Phys Chem. 2009;78(7–8):425–8.

    Article  CAS  Google Scholar 

  4. Raschi E, Vasina V, Ursino MG, Boriani G, Martoni A, De Ponti F. Anticancer drugs and cardiotoxicity: insights and perspectives in the era of targeted therapy. Pharmacol Ther. 2010;125(2):196–218.

    Article  CAS  Google Scholar 

  5. Pathania D, Millard M, Neamati N. Opportunities in discovery and delivery of anticancer drugs targeting mitochondria and cancer cell metabolism. Adv Drug Deliv Rev. 2009;61(14):1250–75.

    Article  CAS  Google Scholar 

  6. Kievit FM, Wang FY, Fang C, Mok H, Wang K, Silber JR, Ellenbogen RG, Zhang M. Doxorubicin loaded iron oxide nanoparticles overcome multidrug resistance in cancer in vitro. J. Control. Release 2011;152(1SI):76–83.

    Article  CAS  Google Scholar 

  7. Zhang H, Li F, Yi J, Gu C, Fan L, Qiao Y, Tao Y, Cheng C, Wu H. Folate-decorated maleilated pullulan-doxorubicin conjugate for active tumor-targeted drug delivery (vol 42, pg 517, 2011). Eur J Pharm Sci. 2011;43(5):409.

    Article  Google Scholar 

  8. Zheng C, Xu J, Yao X, Xu J, Qiu L. Polyphosphazene nanoparticles for cytoplasmic release of doxorubicin with improved cytotoxicity against dox-resistant tumor cells. J Colloid Interface Sci. 2011;355(2):374–82.

    Article  CAS  Google Scholar 

  9. Cho H, Yoon I, Yoon HY, Koo H, Jin Y, Ko S, Shim J, Kim K, Kwon IC, Kim D. Polyethylene glycol-conjugated hyaluronic acid-ceramide self-assembled nanoparticles for targeted delivery of doxorubicin. Biomaterials. 2012;33(4):1190–200.

    Article  CAS  Google Scholar 

  10. Warburg O. Origin of cancer cells. Science. 1956;123(3191):309–14.

    Article  CAS  Google Scholar 

  11. Ganapathy V, Thangaraju M, Prasad PD. Nutrient transporters in cancer: relevance to Warburg hypothesis and beyond. Pharmacol. Ther. 2009;121(1):29–40.

    Article  CAS  Google Scholar 

  12. Hediger MA, Rhoads DB. Molecular physiology of sodium-glucose cotransporters. Physiol Rev. 1994;74(4):993–1026.

    Article  CAS  Google Scholar 

  13. Amann T, Maegdefrau U, Hartmann A, Agaimy A, Marienhagen J, Weiss TS, Stoeltzing O, Warnecke C, Schoelmerich J, Oefner PJ, Kreutz M, Bosserhoff AK, Hellerbrand C. GLUT1 expression is increased in hepatocellular carcinoma and promotes tumorigenesis. Am J Pathol. 2009;174(4):1544–52.

    Article  CAS  Google Scholar 

  14. Wellberg EA, Johnson S, Finlay-Schultz J, Lewis AS, Terrell KL, Sartorius CA, Abel ED, Muller WJ, Anderson SM. The glucose transporter GLUT1 is required for ErbB2-induced mammary tumorigenesis. Breast Cancer Res. 2016;18:131.

    Article  Google Scholar 

  15. Tabouret-Viaud C, Botsikas D, Delattre BM, Mainta I, Amzalag G, Rager O, Vinh-Hung V, Miralbell R, Ratib O. PET/MR in breast cancer. Semin Nucl Med. 2015;45(4):304–21.

    Article  Google Scholar 

  16. Turkheimer F, Moresco RM, Lucignani G, Sokoloff L, Fazio F, Schmidt K. The use of spectral-analysis to determine regional cerebral glucose-utilization with positron emission tomography and [F-18] Fluorodeoxyglucose - theory, implementation, and optimization procedures. J Cerebr Blood F Met. 1994;14(3):406–22.

    Article  CAS  Google Scholar 

  17. Dienel GA, Cruz NF, Adachi KJ, Sokoloff L, Holden JE. Determination of local brain glucose level with [C-14]methylglucose: effects of glucose supply and demand. Am. J. Physiol. Endoc. M. 1997;273(5):E839–49.

    CAS  Google Scholar 

  18. Axelrod JD, Pilch PF. Unique Cytochalasin-B binding characteristics of the hepatic glucose carrier. Biochemistry-US. 1983;22(9):2222–7.

    Article  CAS  Google Scholar 

  19. Schmidt KC, Lucignani G, Sokoloff L. Fluorine-18-fluorodeoxyglucose PET to determine regional cerebral glucose utilization: A re-examination. J Nucl Med. 1996;37(2):394–9.

    CAS  PubMed  Google Scholar 

  20. Jin Y, Jia C, Huang S, O'Donnell M, Gao X. Multifunctional nanoparticles as coupled contrast agents. Nat Commun. 2010;1:41.

    Article  Google Scholar 

  21. Xiong F, Zhu Z, Xiong C, Hua X, Shan X, Zhang Y, Gu N. Preparation, characterization of 2-deoxy-D-glucose functionalized Dimercaptosuccinic acid-coated Maghemite nanoparticles for targeting tumor cells. Pharm Res-Dordr. 2012;29(4):1087–97.

    Article  CAS  Google Scholar 

  22. Bakhtiary Z, Saei AA, Hajipour MJ, Raoufi M, Vermesh O, Mahmoudi M. Targeted superparamagnetic iron oxide nanoparticles for early detection of cancer: possibilities and challenges. Nanomed-Nanotechnol. 2016;12(2):287–307.

    Article  CAS  Google Scholar 

  23. Pankhurst QA, NTK T, Jones SK, Dobson J. Progress in applications of magnetic nanoparticles in biomedicine. J. Phys. D Appl. Phys. 2009;42(22)

    Article  Google Scholar 

  24. Berry CC, Curtis A. Functionalisation of magnetic nanoparticles for applications in biomedicine. J Phys D Appl Phys. 2003;36:R198–206.

    Article  CAS  Google Scholar 

  25. Moghimi SM, Hunter AC, Murray JC. Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol Rev. 2001;53(2):283–318.

    CAS  PubMed  Google Scholar 

  26. Tromsdorf UI, Bruns OT, Salmen SC, Beisiegel U, Weller H. A highly Effective, nontoxic T-1 MR contrast agent based on Ultrasmall PEGylated iron oxide nanoparticles. Nano Lett. 2009;9(12):4434–40.

    Article  CAS  Google Scholar 

  27. Amstad E, Gillich T, Bilecka I, Textor M, Reimhult E. Ultrastable iron oxide nanoparticle colloidal suspensions using dispersants with catechol-derived anchor groups. Nano Lett. 2009;9(12):4042–8.

    Article  CAS  Google Scholar 

  28. Amstad E, Zurcher S, Mashaghi A, Wong JY, Textor M, Reimhult E. Surface functionalization of single superparamagnetic iron oxide nanoparticles for targeted magnetic resonance imaging. Small. 2009;5(11):1334–42.

    Article  CAS  Google Scholar 

  29. Lee H, Lee E, Kim DK, Jang NK, Jeong YY, Jon S. Antibiofouling polymer-coated superparamagnetic iron oxide nanoparticles as potential magnetic resonance contrast agents for in vivo cancer imaging. J Am Chem Soc. 2006;128(22):7383–9.

    Article  CAS  Google Scholar 

  30. Liu D, Wu W, Ling J, Wen S, Gu N, Zhang X. Effective PEGylation of iron oxide nanoparticles for high performance In Vivo cancer imaging. Adv Funct Mater. 2011;21(8):1498–504.

    Article  CAS  Google Scholar 

  31. Shan X, Yuan D, Xiong F, Gu N, Wang P. 2-deoxy-D-glucose modified supermagnetic iron oxide nanoparticles enhance the contrasting effect on MRI of human lung adenocarcinoma A549 tumor in nude mice. Zhonghua Zhong Liu Za Zhi. 2014;36(2):85–91.

    CAS  PubMed  Google Scholar 

  32. Chen F, Zhao T, Chen Q, Han L, Fang S, Chen Z. Synthesis and release behavior of methotrexate from Fe3O4/PLA-PEG core/shell nanoparticles with high saturation magnetization. Mater Lett. 2013;108:179–82.

    Article  CAS  Google Scholar 

  33. Amstad E, Zurcher S, Mashaghi A, Wong JY, Textor M, Reimhult E. Surface functionalization of single superparamagnetic iron oxide nanoparticles for targeted magnetic resonance imaging. Small. 2009;5(11):1334–42.

    Article  CAS  Google Scholar 

  34. Ai H, Flask C, Weinberg B, Shuai X, Pagel MD, Farrell D, Duerk J, Gao JM. Magnetite-loaded polymeric micelles as ultrasensitive magnetic-resonance probes. Adv Mater. 2005;17(16):1949.

    Article  CAS  Google Scholar 

  35. Kim J, Lee JE, Lee SH, Yu JH, Lee JH, Park TG, Hyeon T. Designed fabrication of a multifunctional polymer nanomedical platform for simultaneous cancer-targeted imaging and magnetically guided drug delivery. Adv Mater. 2008;20(3):478.

    Article  CAS  Google Scholar 

  36. Qiu P, Jensen C, Charity N, Towner R, Mao C. Oil phase evaporation-induced self-assembly of hydrophobic nanoparticles into spherical clusters with controlled surface chemistry in an oil-in-water dispersion and comparison of behaviors of individual and clustered iron oxide nanoparticles. J Am Chem Soc. 2010;132(50):17724–32.

    Article  CAS  Google Scholar 

  37. Okassa LN, Marchais H, Douziech-Eyrolles L, Herve K, Cohen-Jonathan S, Munnier E, Souce M, Linassier C, Dubois P, Chourpa I. Optimization of iron oxide nanoparticles encapsulation within poly(D,L-lactide-co-glycolide) sub-micron particles. Eur J Pharm Biopharm. 2007;67(1):31–8.

    Article  CAS  Google Scholar 

  38. Arbab AS, Bashaw LA, Miller BR, Jordan EK, Lewis BK, Kalish H, Frank JA. Characterization of biophysical and metabolic properties of cells labeled with superparamagnetic iron oxide nanoparticles and transfection agent for cellular MR imaging. Radiology. 2003;229(3):838–46.

    Article  Google Scholar 

  39. Park J, Yu MK, Jeong YY, Kim JW, Lee K, Phan VN, Jon S. Antibiofouling amphiphilic polymer-coated superparamagnetic iron oxide nanoparticles: synthesis, characterization, and use in cancer imaging in vivo. J Mater Chem. 2009;19(35):6412–7.

    Article  CAS  Google Scholar 

  40. Kim J, Kim HS, Lee N, Kim T, Kim H, Yu T, Song IC, Moon WK, Hyeon T. Multifunctional uniform nanoparticles composed of a magnetite nanocrystal Core and a mesoporous silica Shell for magnetic resonance and fluorescence imaging and for drug delivery. Angew Chem Int Edit. 2008;47(44):8438–41.

    Article  CAS  Google Scholar 

  41. Liu D, Wu W, Ling J, Wen S, Gu N, Zhang X. Effective PEGylation of iron oxide nanoparticles for high performance In Vivo cancer imaging. Adv Funct Mater. 2011;21(8):1498–504.

    Article  CAS  Google Scholar 

  42. Zheng WM, Gao F, Gu HC. Magnetic polymer nanospheres with high and uniform magnetite content. J Magn Magn Mater. 2005;288:403–10.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fei Xiong or Ning Gu.

Electronic supplementary material

ESM 1

(DOCX 21 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, F., Hu, K., Yu, H. et al. A Functional Iron Oxide Nanoparticles Modified with PLA-PEG-DG as Tumor-Targeted MRI Contrast Agent. Pharm Res 34, 1683–1692 (2017). https://doi.org/10.1007/s11095-017-2165-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-017-2165-8

Key Words

Navigation