Skip to main content

Advertisement

Log in

Evaluation of the Utility of Chimeric Mice with Humanized Livers for the Characterization and Profiling of the Metabolites of a Selective Inhibitor (YM543) of the Sodium-Glucose Cotransporter 2

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

YM543 is a novel selective inhibitor of the sodium-glucose cotransporter 2. The objectives of the current study were to evaluate the utility of mice with humanized livers to predict human drug metabolites using YM543 as a case example.

Methods

Metabolites of YM543 generated in humans and experimental animals including chimeric mice with humanized liver, PXB mice, were analyzed via liquid chromatography-mass spectrometry, liquid chromatography-radiometric detector or nuclear magnetic resonance spectrometer.

Results

After oral administration of YM543, metabolites M1–M5 were detected in human plasma and urine. M2–M4 were detected in at least one species while M1 was not generated by experimental animals or in vitro systems. In the metabolite profiling in PXB mice, M1 was detected in both plasma and urine samples.

Conclusions

Metabolite profile of YM543 in PXB mice and humans was closely resemble. and the human specific metabolite was detected in the model mice. The human specific metabolite, M1, was difficult to know in advance to clinical study. The ability to predict the human metabolite profile including presence of human specific metabolites using PXB mice will likely facilitate development of new drug candidates for human use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

COSY:

Correlation spectroscopy

CYP:

Cytochrome P450

HMBC:

Heteronuclear multiple bond correlation

HPLC:

High-performance liquid chromatography

HSQC:

Heteronuclear single quantum coherence

i.d:

Internal diameter

LC:

Liquid chromatography

MPLC:

Medium pressure liquid chromatography

MS:

Mass spectrometry or mass spectrometer

NMR:

Nuclear magnetic resonance spectroscopy or nuclear magnetic resonance spectrometer

NOESY:

Nuclear Overhauser effect spectroscopy

RAD:

Radiometric detector

ROESY:

Rotating frame Overhauser effect spectroscopy

SGLT2:

Sodium-glucose cotransporter 2

TOCSY:

Total correlation spectroscopy

UV:

Ultraviolet

References

  1. Ikegai K, Imamura M, Suzuki T, Nakanishi K, Murakami T, Kurosaki E, et al. Synthesis and biological evaluation of C-glucosides with azulene rings as selective SGLT2 inhibitors for the treatment of type 2 diabetes mellitus: discovery of YM543. Bioorg Med Chem. 2013;21(13):3934–48.

    Article  CAS  PubMed  Google Scholar 

  2. Yokono M, Tahara A, Kurosaki E, Yamajuku D, Kihara R, Imamura M, et al. Pharmacological characterization of YM543, a newly synthesized, orally active SGLT2 selective inhibitor. Endocr Res. 2013;38:168–83.

    Article  CAS  Google Scholar 

  3. Kalasz H, Petroianu G, Hosztafi S, Darvas F, Csermely T, Adeghate E, et al. Medicinal chemistry of drugs with active metabolites following conjugation. Mini Rev Med Chem. 2013;13(11):1550–63.

    Article  CAS  PubMed  Google Scholar 

  4. Klimas R, Mikus G. Morphine-6-glucuronide is responsible for the analgesic effect after morphine administration: a quantitative review of morphine, morphine-6-glucuronide, and morphine-3-glucuronide. Br J Anaesth. 2014;113(6):935–44.

    Article  CAS  PubMed  Google Scholar 

  5. Ram N, Kalasz H, Adeghate E, Darvas F, Hashemi F, Tekes K. Medicinal chemistry of drugs with active metabolites (N-, O-, and S-desalkylation and some specific oxidative alterations). Curr Med Chem. 2012;19(33):5683–704.

    Article  CAS  PubMed  Google Scholar 

  6. Smith DA, Dalvie D. Why do metabolites circulate? Xenobiotica. 2012;42(1):107–26.

    Article  CAS  PubMed  Google Scholar 

  7. FDA. Guidance for industry safety testing of drug metabolites. In.: Food and drug administration. Rockville, MD, USA; 2008. Available from: http://www.fda.gov/downloads/drugs/guidancecomplianceregulatoryinformation/guidances/ucm079266.pdf.

  8. ICH. ICH Guideline M3 (R2): guidance on nonclinical safety studies for the conduct of human clinical trials and marketing authorization for pharmaceuticals. In.: International conference on harmonization. Geneva, Switzerland; 2009. Available from: http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Multidisciplinary/M3_R2/Step4/M3_R2__Guideline.pdf.

  9. Dalvie D, Obach RS, Kang P, Prakash C, Loi CM, Hurst S, et al. Assessment of three human in vitro systems in the generation of major human excretory and circulating metabolites. Chem Res Toxicol. 2009;22(2):357–68.

    Article  CAS  PubMed  Google Scholar 

  10. Tateno C, Yoshizane Y, Saito N, Kataoka M, Utoh R, Yamasaki C, et al. Near completely humanized liver in mice shows human-type metabolic responses to drugs. Am J Pathol. 2004;165(3):901–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Katoh M, Matsui T, Nakajima M, Tateno C, Kataoka M, Soeno Y, et al. Expression of human cytochromes P450 in chimeric mice with humanized liver. Drug Metab Dispos. 2004;32(12):1402–10.

    Article  CAS  PubMed  Google Scholar 

  12. Katoh M, Matsui T, Okumura H, Nakajima M, Nishimura M, Naito S, et al. Expression of human phase II enzymes in chimeric mice with humanized liver. Drug Metab Dispos. 2005;33(9):1333–40.

    Article  CAS  PubMed  Google Scholar 

  13. De Serres M, Bowers G, Boyle G, Beaumont C, Castellino S, Sigafoos J, et al. Evaluation of a chimeric (uPA+/+)/SCID mouse model with a humanized liver for prediction of human metabolism. Xenobiotica. 2011;41(6):464–75.

    Article  PubMed  Google Scholar 

  14. Inoue T, Sugihara K, Ohshita H, Horie T, Kitamura S, Ohta S. Prediction of human disposition toward S-3H-warfarin using chimeric mice with humanized liver. Drug Metab Pharmacokinet. 2009;24(2):153–60.

    Article  CAS  PubMed  Google Scholar 

  15. Kamimura H, Nakada N, Suzuki K, Mera A, Souda K, Murakami Y, et al. Assessment of chimeric mice with humanized liver as a tool for predicting circulating human metabolites. Drug Metab Pharmacokinet. 2010;25(3):223–35.

    Article  CAS  PubMed  Google Scholar 

  16. Yamazaki H, Kuribayashi S, Inoue T, Tateno C, Nishikura Y, Oofusa K, et al. Approach for in vivo protein binding of 5-n-butyl-pyrazolo[1,5-a]pyrimidine bioactivated in chimeric mice with humanized liver by two-dimensional electrophoresis with accelerator mass spectrometry. Chem Res Toxicol. 2010;23(1):152–8.

    Article  CAS  PubMed  Google Scholar 

  17. Karplus M. Vicinal proton coupling in nuclear magnetic resonance. J Am Chem Soc. 1963;85(18):2870–1.

    Article  CAS  Google Scholar 

  18. Bateman TJ, Reddy VGB, Kakuni M, Morikawa Y, Kumar S. Application of chimeric mice with humanized liver for study of human-specific drug metabolism. Drug Metab Dispos. 2014;42(6):1055–65.

    Article  PubMed  Google Scholar 

  19. Nakada N, Oda K. Identification and characterization of metabolites of ASP015K, a novel oral Janus kinase inhibitor, in rats, chimeric mice with humanized liver, and humans. Xenobiotica. 2015;45(9):757–65.

    Article  CAS  PubMed  Google Scholar 

  20. Nakada N, Kawamura A, Kamimura H, Sato K, Kazuki Y, Kakuni M, et al. Murine Cyp3a knockout chimeric mice with humanized liver: prediction of the metabolic profile of nefazodone in humans. Biopharm Drug Dispos. 2016;37(1):3–14.

    Article  CAS  PubMed  Google Scholar 

  21. Kamimura H, Ito S. Assessment of chimeric mice with humanized livers in new drug development: generation of pharmacokinetics, metabolism and toxicity data for selecting the final candidate compound. Xenobiotica. 2016;46(6):557–69.

    Article  CAS  PubMed  Google Scholar 

  22. Kato K, Ohbuchi M, Hamamura S, Ohshita H, Kazuki Y, Oshimura M, et al. Development of murine Cyp3a knockout chimeric mice with humanized liver. Drug Metab Dispos. 2015;43(8):1208–17.

    Article  CAS  PubMed  Google Scholar 

  23. Kamimura H, Ito S, Nozawa K, Nakamura S, Chijiwa H, Nagatsuka S, et al. Formation of the accumulative human metabolite and human-specific glutathione conjugate of diclofenac in TK-NOG chimeric mice with humanized livers. Drug Metab Dispos. 2015;43(3):309–16.

    Article  PubMed  Google Scholar 

  24. Nishiyama S, Suemizu H, Shibata N, Guengerich FP, Yamazaki H. Simulation of human plasma concentrations of thalidomide and primary 5-hydroxylated metabolites explored with pharmacokinetic data in humanized TK-NOG mice. Chem Res Toxicol. 2015;28(11):2088–90.

    Article  CAS  PubMed  Google Scholar 

  25. Samuelsson K, Pickup K, Sarda S, Foster JR, Randall K, Abrahamsson A, et al. Troglitazone metabolism and transporter effects in chimeric mice: a comparison between chimeric humanized and chimeric murinized FRG mice. Xenobiotica. 2014;44(2):186–95.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

The author thanks Mr. Aiji Miyashita, Mr. Kinya Soda, Ms Masami Watanabe, Dr. Fumihiko Ushigome, Mr. Katsuhiro Suzuki, Dr. Yasuhisa Nagasaka, Mr. Kinya Souda, Dr. Mitsuhiro Sekiguchi, Dr. Kazuyoshi Nozaki, Dr. Akio Kawamura, Dr. Takafumi Iwatsubo, Dr. Takashi Usui and Dr. Hidetaka Kamimura (Astellas Pharma Inc.) and Mr. Yoshihiko Haino (Kotobuki Pharmaceutical) for their useful advice.

Naoyuki Nakada is an employee Astellas Pharma Inc. No funding has been received for the conduct of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naoyuki Nakada.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakada, N. Evaluation of the Utility of Chimeric Mice with Humanized Livers for the Characterization and Profiling of the Metabolites of a Selective Inhibitor (YM543) of the Sodium-Glucose Cotransporter 2. Pharm Res 34, 874–886 (2017). https://doi.org/10.1007/s11095-017-2116-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-017-2116-4

KEY WORDS

Navigation