Pharmaceutical Research

, Volume 34, Issue 3, pp 640–653 | Cite as

Dodecyl Amino Glucoside Enhances Transdermal and Topical Drug Delivery via Reversible Interaction with Skin Barrier Lipids

  • Monika Kopečná
  • Miloslav Macháček
  • Eva Prchalová
  • Petr Štěpánek
  • Pavel Drašar
  • Martin Kotora
  • Kateřina Vávrová
Research Paper



Skin permeation/penetration enhancers are substances that enable drug delivery through or into the skin.


To search for new enhancers with high but reversible activity and acceptable toxicity, we synthesized a series of d-glucose derivatives, both hydrophilic and amphiphilic.


Initial evaluation of the ability of these sugar derivatives to increase permeation and penetration of theophylline through/into human skin compared with a control (no enhancer) or sorbitan monolaurate (Span 20; positive control) revealed dodecyl 6-amino-6-deoxy-α-d-glucopyranoside 5 as a promising enhancer. Furthermore, this amino sugar 5 increased epidermal concentration of a highly hydrophilic antiviral cidofovir by a factor of 7. The effect of compound 5 on skin electrical impedance suggested its direct interaction with the skin barrier. Infrared spectroscopy of isolated stratum corneum revealed no effect of enhancer 5 on the stratum corneum proteins but an overall decrease in the lipid chain order. The enhancer showed acceptable toxicity on HaCaT keratinocyte and 3T3 fibroblast cell lines. Finally, transepidermal water loss returned to baseline values after enhancer 5 had been removed from the skin.


Compound 5, a dodecyl amino glucoside, is a promising enhancer that acts through a reversible interaction with the stratum corneum lipids.


penetration enhancers sugar topical drug delivery transdermal drug delivery 





Dodecyl ester of 6 (dimethylamino)hexanoic acid


Dulbecco’s modified Eagle’s medium


Enhancement ratio


High performance liquid chromatography


3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide


Neutral red


Phosphate buffered saline


Propylene glycol


Stratum corneum


Sodium dodecyl sulfate

Span 20

Sorbitan monolaurate


Transepidermal water loss



Transkarbam 12

5-(dodecyloxycarbonyl)pentylammonium 5-(dodecyloxycarbonyl)pentylcarbamate



This work was supported by the Czech Science Foundation (13-23891S). MK was supported by Charles University (1404213 and SVV 206183).

Supplementary material

11095_2016_2093_MOESM1_ESM.docx (217 kb)
ESM 1 (DOCX 216 kb)


  1. 1.
    Prausnitz MR, Mitragotri S, Langer R. Current status and future potential of transdermal drug delivery. Nat Rev Drug Discov. 2004;3(2):115–24.CrossRefPubMedGoogle Scholar
  2. 2.
    Barry BW. Novel mechanisms and devices to enable successful transdermal drug delivery. Eur J Pharm Sci. 2001;14(2):101–14.CrossRefPubMedGoogle Scholar
  3. 3.
    Vávrová K, Zbytovská J, Hrabálek A. Amphiphilic transdermal permeation enhancers: structure-activity relationships. Curr Med Chem. 2005;12(19):2273–91.CrossRefPubMedGoogle Scholar
  4. 4.
    Williams AC, Barry BW. Penetration enhancers. Adv Drug Deliv Rev. 2012;64:128–37.CrossRefGoogle Scholar
  5. 5.
    Hrabalek A, Dolezal P, Vavrova K, Zbytovska J, Holas T, Klimentova J, et al. Synthesis and enhancing effect of transkarbam 12 on the transdermal delivery of theophylline, clotrimazole, flobufen, and griseofulvin. Pharm Res. 2006;23(5):912–9.CrossRefPubMedGoogle Scholar
  6. 6.
    Janůšová B, Školová B, Tükörová K, Wojnarová L, Šimůnek T, Mladěnka P, et al. Amino acid derivatives as transdermal permeation enhancers. J Control Release. 2013;165(2):91–100.CrossRefPubMedGoogle Scholar
  7. 7.
    Novotny J, Kovarikova P, Novotny M, Janusova B, Hrabalek A, Vavrova K. Dimethylamino acid esters as biodegradable and reversible transdermal permeation enhancers: effects of linking chain length, chirality and polyfluorination. Pharm Res. 2009;26(4):811–21.CrossRefPubMedGoogle Scholar
  8. 8.
    Plat T, Linhardt RJ. Syntheses and applications of sucrose-based esters. J Surfactants Detergents. 2001;4(4):415–21.CrossRefGoogle Scholar
  9. 9.
    Som I, Bhatia K, Yasir M. Status of surfactants as penetration enhancers in transdermal drug delivery. J Pharm Bioal Sci. 2012;4(1):2.CrossRefGoogle Scholar
  10. 10.
    Cázares-Delgadillo J, Naik A, Kalia YN, Quintanar-Guerrero D, Ganem-Quintanar A. Skin permeation enhancement by sucrose esters: a pH-dependent phenomenon. Int J Pharm. 2005;297(1):204–12.CrossRefPubMedGoogle Scholar
  11. 11.
    El-Laithy HM, Shoukry O, Mahran LG. Novel sugar esters proniosomes for transdermal delivery of vinpocetine: preclinical and clinical studies. Eur J Pharm Biopharm. 2011;77(1):43–55.CrossRefPubMedGoogle Scholar
  12. 12.
    Arellano A, Santoyo S, Martn C, Ygartua P. Surfactant effects on the in vitro percutaneous absorption of diclofenac sodium. Eur J Drug Metab Pharmacokinet. 1998;23(2):307–12.CrossRefPubMedGoogle Scholar
  13. 13.
    López A, Llinares F, Cortell C, Herraez M. Comparative enhancer effects of Span® 20 with Tween® 20 and Azone® on the in vitro percutaneous penetration of compounds with different lipophilicities. Int J Pharm. 2000;202(1):133–40.CrossRefPubMedGoogle Scholar
  14. 14.
    Femenia-Font A, Balaguer-Fernandez C, Merino V, Rodilla V, Lopez-Castellano A. Effect of chemical enhancers on the in vitro percutaneous absorption of sumatriptan succinate. Eur J Pharm Biopharm. 2005;61(1):50–5.CrossRefPubMedGoogle Scholar
  15. 15.
    Stoughton RB. Enhanced percutaneous penetration with 1-dodecylazacycloheptan-2-one. Arch Dermatol. 1982;118(7):474–7.CrossRefPubMedGoogle Scholar
  16. 16.
    Wulff G, Clarkson G. On the synthesis of C-glycosyl compounds containing double bonds without the use of protecting groups. Carbohydrate Res. 1994;257(1):81–95.CrossRefGoogle Scholar
  17. 17.
    Plusquellec D, Baczko K. Sugar chemistry without protecting groups: a novel regioselective synthesis of 6-O-acyl-D-glucopyranoses and methyl-6-O-acyl-α-D-glucopyranosides. Tetrahedron Lett. 1987;28(33):3809–12.CrossRefGoogle Scholar
  18. 18.
    Poláková M, Belánová M, Mikušová KN, Lattová E, Perreault H. Synthesis of 1, 2, 3-triazolo-linked octyl (1 → 6)-α-D-oligomannosides and their evaluation in mycobacterial mannosyltransferase assay. Bioconjugate Chem. 2011;22(2):289–98.CrossRefGoogle Scholar
  19. 19.
    Milkereit G, Morr M, Thiem J, Vill V. Thermotropic and lyotropic properties of long chain alkyl glycopyranosides: part III: pH-sensitive headgroups. Chem Phys Lipids. 2004;127(1):47–63.CrossRefPubMedGoogle Scholar
  20. 20.
    Šimák O, Staněk J, Moravcová J. A stereocontrolled synthesis of 3-acetamido-1, 3, 5-trideoxy-and 1, 3, 5, 6-tetradeoxy-1, 5-imino-d-glucitol. Carbohydrate Res. 2009;344(8):966–71.CrossRefGoogle Scholar
  21. 21.
    Burland PA, Osborn HM, Turkson A. Synthesis and glycosidase inhibitory profiles of functionalised morpholines and oxazepanes. Bioorg Med Chem. 2011;19(18):5679–92.CrossRefPubMedGoogle Scholar
  22. 22.
    Novotný J, Janůšová B, Novotný M, Hrabálek A, Vávrová K. Short-chain ceramides decrease skin barrier properties. Skin Pharmacol Physiol. 2009;22(1):22–30.CrossRefPubMedGoogle Scholar
  23. 23.
    Kligman AM, Christophers E. Preparation of isolated sheets of human stratum corneum. Arch Dermatol. 1963;88:702–5.CrossRefPubMedGoogle Scholar
  24. 24.
    Flynn GL, Stewart B. Percutaneous drug penetration: choosing candidates for transdermal development. Drug Dev Res. 1988;13(2‐3):169–85.CrossRefGoogle Scholar
  25. 25.
    Netzlaff F, Kaca M, Bock U, Haltner-Ukomadu E, Meiers P, Lehr C-M, et al. Permeability of the reconstructed human epidermis model Episkin® in comparison to various human skin preparations. Eur J Pharm Biopharm. 2007;66(1):127–34.CrossRefPubMedGoogle Scholar
  26. 26.
    Zabawski Jr EJ. A review of topical and intralesional cidofovir. Dermatol Online J. 2000;6(1):3.PubMedGoogle Scholar
  27. 27.
    Bernard G, Auger M, Soucy J, Pouliot R. Physical characterization of the stratum corneum of an in vitro psoriatic skin model by ATR-FTIR and Raman spectroscopies. Biochim Biophys Acta. 2007;1770(9):1317–23.CrossRefPubMedGoogle Scholar
  28. 28.
    Mendelsohn R, Flach CR, Moore DJ. Determination of molecular conformation and permeation in skin via IR spectroscopy, microscopy, and imaging. Biochim Biophys Acta. 2006;1758(7):923–33.CrossRefPubMedGoogle Scholar
  29. 29.
    Bárány E, Lindberg M, Lodén M. Biophysical characterization of skin damage and recovery after exposure to different surfactants. Contact Dermatitis. 1999;40(2):98–103.CrossRefPubMedGoogle Scholar
  30. 30.
    Szűts A, Szabó-Révész P. Sucrose esters as natural surfactants in drug delivery systems—a mini-review. Int J Pharm. 2012;433(1):1–9.CrossRefPubMedGoogle Scholar
  31. 31.
    Kim N, El-Kattan A, Asbill C, Kennette R, Sowell J, Latour R, et al. Evaluation of derivatives of 3-(2-oxo-1-pyrrolidine) hexahydro-1H-azepine-2-one as dermal penetration enhancers: side chain length variation and molecular modeling. J Control Release. 2001;73(2):183–96.CrossRefPubMedGoogle Scholar
  32. 32.
    Janůšová B, Zbytovská J, Lorenc P, Vavrysová H, Palát K, Hrabálek A, et al. Effect of ceramide acyl chain length on skin permeability and thermotropic phase behavior of model stratum corneum lipid membranes. Biochim Biophys Acta. 2011;1811(3):129–37.CrossRefPubMedGoogle Scholar
  33. 33.
    Elsner P, Wigger-Alberti W, Pantini G. Perfluoropolyethers in the prevention of irritant contact dermatitis. Dermatology. 1998;197(2):141–5.CrossRefPubMedGoogle Scholar
  34. 34.
    Karande P, Jain A, Mitragotri S. Discovery of transdermal penetration enhancers by high-throughput screening. Nat Biotechnol. 2004;22(2):192–7.CrossRefPubMedGoogle Scholar
  35. 35.
    De Clercq E, Holý A. Acyclic nucleoside phosphonates: a key class of antiviral drugs. Nat Rev Drug Discov. 2005;4(11):928–40.CrossRefPubMedGoogle Scholar
  36. 36.
    Vávrová K, Lorencová K, Klimentová J, Novotný J, Hrabálek A. Transdermal and dermal delivery of adefovir: effects of pH and permeation enhancers. Eur J Pharm Biopharm. 2008;69(2):597–604.CrossRefPubMedGoogle Scholar
  37. 37.
    Diblíková D, Kopečná M, Školová B, Krečmerová M, Roh J, Hrabálek A, et al. Transdermal delivery and cutaneous targeting of antivirals using a penetration enhancer and lysolipid prodrugs. Pharm Res. 2014;31(4):1071–81.CrossRefPubMedGoogle Scholar
  38. 38.
    Lin S-Y, Duan K-J, Lin T-C. Simultaneous determination of the protein conversion process in porcine stratum corneum after pretreatment with skin enhancers by a combined microscopic FT-IR/DSC system. Spectrochim Acta A Mol Biomol Spectrosc. 1996;52(12):1671–8.CrossRefGoogle Scholar
  39. 39.
    Moore DJ, Rerek ME, Mendelsohn R. FTIR spectroscopy studies of the conformational order and phase behavior of ceramides. J Phys Chem B. 1997;101(44):8933–40.CrossRefGoogle Scholar
  40. 40.
    López-Castellano A, Cortell-Ivars C, López-Carballo G, Herráez-Domınguez M. The influence of Span® 20 on stratum corneum lipids in Langmuir monolayers: comparison with Azone®. Int J Pharm. 2000;203(1):245–53.CrossRefPubMedGoogle Scholar
  41. 41.
    Loffler H, Pirker C, Aramaki J, Frosch PJ, Happle R, Effendy I. Evaluation of skin susceptibility to irritancy by routine patch testing with sodium lauryl sulfate. Eur J Dermatol. 2001;11(5):416–9.PubMedGoogle Scholar
  42. 42.
    Tanojo H, Boelsma E, Junginger HE, Ponec M, Boddé HE. In vivo human skin barrier modulation by topical application of fatty acids. Skin Pharmacol Physiol. 1998;11(2):87–97.CrossRefGoogle Scholar
  43. 43.
    Yang L, Mao‐Qiang M, Taljebini M, Elias P, Feingold K. Topical stratum corneum lipids accelerate barrier repair after tape stripping, solvent treatment and some but not all types of detergent treatment. Brit J Dermatol. 1995;133(5):679–85.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Monika Kopečná
    • 1
  • Miloslav Macháček
    • 2
  • Eva Prchalová
    • 3
  • Petr Štěpánek
    • 4
  • Pavel Drašar
    • 4
  • Martin Kotora
    • 3
    • 5
  • Kateřina Vávrová
    • 1
  1. 1.Skin Barrier Research Group, Faculty of Pharmacy in Hradec KrálovéCharles UniversityHradec KrálovéCzech Republic
  2. 2.Department of Biochemical Sciences, Faculty of Pharmacy in Hradec KrálovéCharles UniversityHradec KrálovéCzech Republic
  3. 3.Institute of Organic Chemistry and Biochemistry AS CRPraha 6Czech Republic
  4. 4.Department of Chemistry of Natural CompoundsUniversity of Chemistry and TechnologyPraha 6Czech Republic
  5. 5.Department of Organic Chemistry, Faculty of ScienceCharles University in PraguePraha 2Czech Republic

Personalised recommendations