Pharmaceutical Research

, Volume 33, Issue 12, pp 3031–3043 | Cite as

Match of Solubility Parameters Between Oil and Surfactants as a Rational Approach for the Formulation of Microemulsion with a High Dispersed Volume of Copaiba Oil and Low Surfactant Content

  • Francisco Humberto Xavier-Junior
  • Nicolas Huang
  • Jean-Jacques Vachon
  • Vera Lucia Garcia Rehder
  • Eryvaldo Sócrates Tabosa do Egito
  • Christine VauthierEmail author
Research Paper



Aim was to formulate oil-in-water (O/W) microemulsion with a high volume ratio of complex natural oil, i.e. copaiba oil and low surfactant content. The strategy of formulation was based on (i) the selection of surfactants based on predictive calculations of chemical compatibility between their hydrophobic moiety and oil components and (ii) matching the HLB of the surfactants with the required HLB of the oil.


Solubility parameters of the hydrophobic moiety of the surfactants and of the main components found in the oil were calculated and compared. In turn, required HLB of oils were calculated. Selection of surfactants was achieved matching their solubility parameters with those of oil components. Blends of surfactants were prepared with HLB matching the required HLB of the oils. Oil:water mixtures (15:85 and 25:75) were the titrated with surfactant blends until a microemulsion was formed.


Two surfactant blends were identified from the predictive calculation approach. Microemulsions containing up to 19.6% and 13.7% of selected surfactant blends were obtained.


O/W microemulsions with a high volume fraction of complex natural oil and a reasonable surfactant concentration were formulated. These microemulsions can be proposed as delivery systems for the oral administration of poorly soluble drugs.


copaiba oil HLB microemulsion oil-in-water solubility parameters 



Hydrogen bonding energy of the partial group


Dispersion energy of the partial group


Polar energy of the partial group


Gas chromatography – flame ionization detector


Gas chromatography–mass spectrometry


Hydrophilic-lipophilic balance


Required hydrophilic-lipophilic balance

HLB0essential oil

Required hydrophilic-lipophilic balance of copaiba essential oil


Required hydrophilic-lipophilic balance of an oil


Required hydrophilic-lipophilic balance of copaiba resin oil


Constant applied to O/W emulsion




Polydispersity index


Molar volume


Weight fractions of the surfactants/ compound


Dispersive partial solubility parameters


Hydrogen bonding partial solubility parameters


Polar partial solubility parameters


Total solubility parameter



This work was financially supported by the “coordenação de aperfeiçoamento de pessoal de nível superior” CAPES COFECUB 721/11. The authors wish to thank Dr Alexandre Maciuk for his help in the dosage of Copaiba Oil.

Supplementary material

11095_2016_2025_MOESM1_ESM.docx (76 kb)
ESM 1 (DOCX 75 kb)


  1. 1.
    Muzaffar F, Singh UK, Chauhan L. Review on microemulsion as futuristic drug delivery. Int J Pharm Pharm Sci. 2013;5:39–53.Google Scholar
  2. 2.
    Lawrence MJ, Rees GD. Microemulsion-based media as novel drug delivery systems. Adv Drug Deliv Rev. 2012;64:175–93.CrossRefGoogle Scholar
  3. 3.
    Araya H, Tomita M, Hayashi M. The novel formulation design of O/W microemulsion for improving the gastrointestinal absorption of poorly water soluble compounds. Int J Pharm. 2005;305(1–2):61–74.CrossRefPubMedGoogle Scholar
  4. 4.
    Gibaud S, Attivi D. Microemulsions for oral administration and their therapeutic applications. Expert Opin Drug Deliv. 2012;9(8):937–51.CrossRefPubMedGoogle Scholar
  5. 5.
    Danielsson I, Lindman B. The definition of microemulsion. Colloids Surf. 1981;3(4):391–2.CrossRefGoogle Scholar
  6. 6.
    McClements DJ. Nanoemulsions versus microemulsions: terminology, differences, and similarities. Soft Matter. 2012;8:1719–29.CrossRefGoogle Scholar
  7. 7.
    Hoar TP, Schulman JH. Transparent water-in-oil dispersions: the oleopathic hydro-micelle. Nature. 1943;152:102–4.CrossRefGoogle Scholar
  8. 8.
    Souza AB, Martins CH, Souza MG, Furtado NA, Heleno VC, de Sousa JP, et al. Antimicrobial activity of terpenoids from Copaifera langsdorffii Desf. against cariogenic bacteria. Phytother Res. 2011;25(2):215–20.PubMedGoogle Scholar
  9. 9.
    Comelli Júnior E, Skinovski J, Sigwalt MF, Branco AB, Luz SR, Baulé CP. Rupture point analysis of intestinal anastomotic healing in rats under the action of pure Copaíba (Copaifera Iangsdorfii) oil. Acta Cir Bras. 2010;25:362–7.PubMedGoogle Scholar
  10. 10.
    Gomes NM, Rezende CM, Fontes SP, Hovell AM, Landgraf RG, Matheus ME, et al. Antineoplasic activity of Copaifera multijuga oil and fractions against ascitic and solid Ehrlich tumor. J Ethnopharmacol. 2008;119(1):179–84.CrossRefGoogle Scholar
  11. 11.
    Attaphong C, Do L, Sabatini DA. Vegetable oil-based microemulsions using carboxylate-based extended surfactants and their potential as an alternative renewable biofuel. Fuel. 2012;94(1):606–13.CrossRefGoogle Scholar
  12. 12.
    Lee MJ, Lee MH, Shim CK. Inverse targeting of drugs to reticuloendothelial system-rich organs by lipid microemulsion emulsified with poloxamer-338. Int J Pharm. 1995;113(2):175–87.CrossRefGoogle Scholar
  13. 13.
    Zhang H, Shen Y, Bao Y, He Y, Feng F, Zheng X. Characterization and synergistic antimicrobial activities of food-grade dilution-stable microemulsions against Bacillus subtilis. Food Res Int. 2008;41(5):495–9.CrossRefGoogle Scholar
  14. 14.
    Djordjevic L, Primorac M, Stupar M, Krajisnik D. Characterization of caprylocaproyl macrogolglycerides based microemulsion drug delivery vehicles for an amphiphilic drug. Int J Pharm. 2004;271(1–2):11–9.CrossRefPubMedGoogle Scholar
  15. 15.
    Boonme P, Krauel K, Graf A, Rades T, Junyaprasert VB. Characterization of microemulsion structures in the pseudoternary phase diagram of isopropyl palmitate/water/Brij 97:1-butanol. AAPS PharmSciTech. 2006;7(2):99–104.CrossRefGoogle Scholar
  16. 16.
    Ghosh V, Saranya S, Mukherjee A, Chandrasekaran N. Antibacterial microemulsion prevents sepsis and triggers healing of wound in wistar rats. Colloids Surf B: Biointerfaces. 2013;105:152–7.CrossRefPubMedGoogle Scholar
  17. 17.
    Teixeira PC, Leite GM, Domingues RJ, Silva J, Gibbs PA, Ferreira JP. Antimicrobial effects of a microemulsion and a nanoemulsion on enteric and other pathogens and biofilms. Int J Food Microbiol. 2007;118(1):15–9.CrossRefPubMedGoogle Scholar
  18. 18.
    Hamed SF, Sadek Z, Edris A. Antioxidant and antimicrobial activities of clove bud essential oil and eugenol nanoparticles in alcohol-free microemulsion. J Oleo Sci. 2012;61(11):641–8.CrossRefPubMedGoogle Scholar
  19. 19.
    Surjyanarayan M, Snigdha SM, Naazneen S. Design and development of Saquinavir microemulsion for the oral bioavailability enhancement. Int J PharmTech Res. 2009;1:1442–8.Google Scholar
  20. 20.
    Borhade V, Nair H, Hegde D. Design and evaluation of self-microemulsifying drug delivery system (SMEDDS) of tacrolimus. AAPS PharmSciTech. 2008;9(1):13–21.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Hu L, Wu H, Niu F, Yan C, Yang X, Jia Y. Design of fenofibrate microemulsion for improved bioavailability. Int J Pharm. 2011;420(2):251–5.CrossRefPubMedGoogle Scholar
  22. 22.
    Dantas TNC, Silva HSRC, Neto AAD, Marcucci MC, Maciel MAM. Development of a new propolis microemulsion system for topical applications. Rev Bras Farmacogn. 2010;20(3):368–75.CrossRefGoogle Scholar
  23. 23.
    Yi C, Zhong H, Tong S, Cao X, Firempong CK, Liu H, et al. Enhanced oral bioavailability of a sterol-loaded microemulsion formulation of Flammulina velutipes, a potential antitumor drug. Int J Nanomedicine. 2012;7:5067–78.PubMedPubMedCentralGoogle Scholar
  24. 24.
    Spernath A, Yaghmur A, Aserin A, Hoffman RE, Garti N. Food-grade microemulsions based on nonionic emulsifiers: media to enhance lycopene solubilization. J Agric Food Chem. 2002;50(23):6917–22.CrossRefPubMedGoogle Scholar
  25. 25.
    Rao J, McClements DJ. Formation of flavor oil microemulsions, nanoemulsions and emulsions: influence of composition and preparation method. J Agric Food Chem. 2011;59(9):5026–35.CrossRefPubMedGoogle Scholar
  26. 26.
    Jha SK, Karki R, Venkatesh DP, Geethalakshami A. Formulation development and characterization of microemulsion drug delivery systems containing antiulcer drug. Int J Drug Dev Res. 2011;3(4):336–43.Google Scholar
  27. 27.
    Lee H, Soo PL, Liu J, Butler M, Allen C. Polymeric micelles for formulation of anti-cancer drugs. In: Amiji MM, editor. Nanotechnology for Cancer Therapy. CRC Press; 2006. p. 329.Google Scholar
  28. 28.
    Tian Q, Ren F, Xu Z, Xie Y, Zhang S. Preparation of high solubilizable microemulsion of naproxen and its solubilization mechanism. Int J Pharm. 2012;426(1–2):202–10.CrossRefPubMedGoogle Scholar
  29. 29.
    Biresh KS, Shiv SH. Microemulsion drug delivery system for oral bioavailability enhancement of glipizide. J Adv Pharm Technol Res. 2011;1(4):195–200.Google Scholar
  30. 30.
    Mrestani Y, Behbood L, Hartl A, Neubert RH. Microemulsion and mixed micelle for oral administration as new drug formulations for highly hydrophilic drugs. Eur J Pharm Biopharm. 2010;74(2):219–22.CrossRefPubMedGoogle Scholar
  31. 31.
    Solanki SS, Sarkar B, Dhanwani RK. Microemulsion drug delivery system: for bioavailability enhancement of ampelopsin. ISRN Pharm. 2012;2012:1–4.Google Scholar
  32. 32.
    Pestana KC, Formariz TP, Franzini CM, Sarmento VH, Chiavacci LA, Scarpa MV, et al. Oil-in-water lecithin-based microemulsions as a potential delivery system for amphotericin B. Colloids Surf B: Biointerfaces. 2008;66(2):253–9.CrossRefPubMedGoogle Scholar
  33. 33.
    Gao Z-G, Choi H-G, Shin H-J, Park K-M, Lim S-J, Hwang K-J, et al. Physicochemical characterization and evaluation of a microemulsion system for oral delivery of cyclosporin A. Int J Pharm. 1998;61(1):75–86.CrossRefGoogle Scholar
  34. 34.
    Acharya A, Sanyal SK, Moulik SP. Physicochemical investigations on microemulsification of eucalyptol and water in presence of polyoxyethylene (4) lauryl ether (Brij-30) and ethanol. Int J Pharm. 2001;229(1–2):213–26.CrossRefPubMedGoogle Scholar
  35. 35.
    Agatonovic-Kustrin S, Glass BD, Wisch MH, Alany RG. Prediction of a stable microemulsion formulation for the oral delivery of a combination of antitubercular drugs using ANN methodology. Pharm Res. 2003;20(11):1760–5.CrossRefPubMedGoogle Scholar
  36. 36.
    Zeng Z, Zhou G, Wang X, Huang EZ, Zhan X, Liu J, et al. Preparation, characterization and relative bioavailability of oral elemene o/w microemulsion. Int J Nanomedicine. 2010;5:567–72.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Sapra B, Bhandari S, Sood J, Jindal M, Tiwary A, Tiwary A. A critical appraisal of microemulsions for drug delivery: part I. Ther Deliv. 2013;4(12):1547–64.CrossRefPubMedGoogle Scholar
  38. 38.
    He CX, Gao J-Q, Gao JQ. Microemulsions as drug delivery systems to improve the solubility and the bioavailability of poorly water-soluble drugs. Expert Opin Drug Deliv. 2010;7(4):445–60.CrossRefPubMedGoogle Scholar
  39. 39.
    Barton AFM. Handbook of solubility parameters and other cohesive parameters. New York; 1983.Google Scholar
  40. 40.
    Hancock BC, York P, Rowe RC. The use of solubility parameters in pharmaceutical dosage form design. Int J Pharm. 1997;148(1):1–21.CrossRefGoogle Scholar
  41. 41.
    Lim SM, Pang ZW, Tan HY, Shaikh M, Adinarayana G, Garg S. Enhancement of docetaxel solubility using binary and ternary solid dispersion systems. Drug Dev Ind Pharm. 2015;41(11):1847–55.CrossRefPubMedGoogle Scholar
  42. 42.
    Beerbower A, Hill MW. McCutcheon’s detergents and emulsifiers annual. Ridgewood, NJ: Allured Publishing Co; 1971.Google Scholar
  43. 43.
    Hansen CM. The three dimensional solubility parameter - key to paint component affinities ii. - dyes, emulsifiers, mutual solubility and compatibility, and pigments. J Paint Technol. 1967;39(511):505–10.Google Scholar
  44. 44.
    Hildebrand JH, Prausnitz JM, Scott RL. Regular and related solutions. New York: Van Nostrand Reinhold; 1970.Google Scholar
  45. 45.
    Holtzscherer C, Candau F. Application of the cohesive energy ratio concept (CER) to the formation of polymerizable microemulsions. Colloids Surf. 1988;29(4):411–23.CrossRefGoogle Scholar
  46. 46.
    Xavier-Junior FH, Maciuk A, Morais ARV, Alencar EN, Rehder VLG, Egito EST, et al. Copaiba oil analysis by gas-chromatography coupled to mass spectroscopy and flame ionization detection. Submitted for publication.Google Scholar
  47. 47.
    van Krevelen DW, Hoftyzer PJ. Properties of polymers: their estimation and correlation with chemical structure. Amsterdam: Elsevier; 1976.Google Scholar
  48. 48.
    Griffin WC. Classification of surface-active agents by ‘HLB’. J Soc Cosmet Chem. 1949;1(5):311–26.Google Scholar
  49. 49.
    Griffin WC. Calculation of HLB values of non-ionic surfactants. J Soc Cosmet Chem. 1954;5(4):249–56.Google Scholar
  50. 50.
    Alencar EN, Xavier-Júnior FH, Morais ARV, Dantas TRF, Dantas-Santos N, Verissimo LM, et al. Chemical characterization and antimicrobial activity evaluation of natural oil nanostructured emulsions. J Nanosci Nanotechnol. 2015;15(1):880–8.CrossRefPubMedGoogle Scholar
  51. 51.
    Xavier-Júnior FH, Silva KGH, Farias IEG, Morais ARV, Alencar EN, Araújo IB, et al. Prospective study for the development of emulsion systems containing natural oil products. J Drug Delivery Sci Technol. 2012;22(4):367–72.CrossRefGoogle Scholar
  52. 52.
    Formariz TP, Chiavacci LA, Scarpa MV, Silva-Júnior AA, Egito EST, Terrugi CHB, et al. Structure and viscoelastic behavior of pharmaceutical biocompatible anionic microemulsions containing the antitumoral drug compound doxorubicin. Colloids Surf B: Biointerfaces. 2010;77(1):47–53.CrossRefPubMedGoogle Scholar
  53. 53.
    Acharya DP, Hartley PG. Progress in microemulsion characterization. Curr Opin Colloid Interface Sci. 2012;17(5):274–80.CrossRefGoogle Scholar
  54. 54.
    Legault J, Pichette A. Potentiating effect of beta-caryophyllene on anticancer activity of alpha-humulene, isocaryophyllene and paclitaxel. J Pharm Pharmacol. 2007;59(12):1643–7.CrossRefPubMedGoogle Scholar
  55. 55.
    Prakash AS. Selecting surfactants for the maximum inhibition of the activity of the multidrug resistance efflux pump transporter, P-glycoprotein: conceptual development. J Excip Food Chem. 2010;1(3):51–9.Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Francisco Humberto Xavier-Junior
    • 1
    • 2
  • Nicolas Huang
    • 1
  • Jean-Jacques Vachon
    • 1
  • Vera Lucia Garcia Rehder
    • 3
  • Eryvaldo Sócrates Tabosa do Egito
    • 2
  • Christine Vauthier
    • 1
    Email author
  1. 1.Université Paris-SudInstitut Galien Paris Sud - UMR CNRS 8612 - Faculté de PharmacieChatenay-Malabry CedexFrance
  2. 2.Universidade Federal do Rio Grande do Norte, Centro de Ciências da Saúde, Departamento de Farmácia, Laboratório de Sistemas Dispersos (LaSiD)NatalBrazil
  3. 3.Universidade Estadual de Campinas (UNICAMP) – Centro Pluridisciplinar de Pesquisas QuímicasPaulíniaBrazil

Personalised recommendations