Skip to main content
Log in

Match of Solubility Parameters Between Oil and Surfactants as a Rational Approach for the Formulation of Microemulsion with a High Dispersed Volume of Copaiba Oil and Low Surfactant Content

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Aim was to formulate oil-in-water (O/W) microemulsion with a high volume ratio of complex natural oil, i.e. copaiba oil and low surfactant content. The strategy of formulation was based on (i) the selection of surfactants based on predictive calculations of chemical compatibility between their hydrophobic moiety and oil components and (ii) matching the HLB of the surfactants with the required HLB of the oil.

Method

Solubility parameters of the hydrophobic moiety of the surfactants and of the main components found in the oil were calculated and compared. In turn, required HLB of oils were calculated. Selection of surfactants was achieved matching their solubility parameters with those of oil components. Blends of surfactants were prepared with HLB matching the required HLB of the oils. Oil:water mixtures (15:85 and 25:75) were the titrated with surfactant blends until a microemulsion was formed.

Results

Two surfactant blends were identified from the predictive calculation approach. Microemulsions containing up to 19.6% and 13.7% of selected surfactant blends were obtained.

Conclusion

O/W microemulsions with a high volume fraction of complex natural oil and a reasonable surfactant concentration were formulated. These microemulsions can be proposed as delivery systems for the oral administration of poorly soluble drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

Ehi :

Hydrogen bonding energy of the partial group

Fdi :

Dispersion energy of the partial group

Fpi :

Polar energy of the partial group

GC-FID:

Gas chromatography – flame ionization detector

GC-MS:

Gas chromatography–mass spectrometry

HLB:

Hydrophilic-lipophilic balance

HLB0 :

Required hydrophilic-lipophilic balance

HLB0essential oil :

Required hydrophilic-lipophilic balance of copaiba essential oil

HLB0oil :

Required hydrophilic-lipophilic balance of an oil

HLB0resin :

Required hydrophilic-lipophilic balance of copaiba resin oil

K:

Constant applied to O/W emulsion

O/W:

Oil-in-water

PdI:

Polydispersity index

V:

Molar volume

W:

Weight fractions of the surfactants/ compound

δd :

Dispersive partial solubility parameters

δh :

Hydrogen bonding partial solubility parameters

δp :

Polar partial solubility parameters

δt :

Total solubility parameter

References

  1. Muzaffar F, Singh UK, Chauhan L. Review on microemulsion as futuristic drug delivery. Int J Pharm Pharm Sci. 2013;5:39–53.

    CAS  Google Scholar 

  2. Lawrence MJ, Rees GD. Microemulsion-based media as novel drug delivery systems. Adv Drug Deliv Rev. 2012;64:175–93.

    Article  Google Scholar 

  3. Araya H, Tomita M, Hayashi M. The novel formulation design of O/W microemulsion for improving the gastrointestinal absorption of poorly water soluble compounds. Int J Pharm. 2005;305(1–2):61–74.

    Article  CAS  PubMed  Google Scholar 

  4. Gibaud S, Attivi D. Microemulsions for oral administration and their therapeutic applications. Expert Opin Drug Deliv. 2012;9(8):937–51.

    Article  CAS  PubMed  Google Scholar 

  5. Danielsson I, Lindman B. The definition of microemulsion. Colloids Surf. 1981;3(4):391–2.

    Article  CAS  Google Scholar 

  6. McClements DJ. Nanoemulsions versus microemulsions: terminology, differences, and similarities. Soft Matter. 2012;8:1719–29.

    Article  CAS  Google Scholar 

  7. Hoar TP, Schulman JH. Transparent water-in-oil dispersions: the oleopathic hydro-micelle. Nature. 1943;152:102–4.

    Article  CAS  Google Scholar 

  8. Souza AB, Martins CH, Souza MG, Furtado NA, Heleno VC, de Sousa JP, et al. Antimicrobial activity of terpenoids from Copaifera langsdorffii Desf. against cariogenic bacteria. Phytother Res. 2011;25(2):215–20.

    CAS  PubMed  Google Scholar 

  9. Comelli Júnior E, Skinovski J, Sigwalt MF, Branco AB, Luz SR, Baulé CP. Rupture point analysis of intestinal anastomotic healing in rats under the action of pure Copaíba (Copaifera Iangsdorfii) oil. Acta Cir Bras. 2010;25:362–7.

    PubMed  Google Scholar 

  10. Gomes NM, Rezende CM, Fontes SP, Hovell AM, Landgraf RG, Matheus ME, et al. Antineoplasic activity of Copaifera multijuga oil and fractions against ascitic and solid Ehrlich tumor. J Ethnopharmacol. 2008;119(1):179–84.

    Article  Google Scholar 

  11. Attaphong C, Do L, Sabatini DA. Vegetable oil-based microemulsions using carboxylate-based extended surfactants and their potential as an alternative renewable biofuel. Fuel. 2012;94(1):606–13.

    Article  CAS  Google Scholar 

  12. Lee MJ, Lee MH, Shim CK. Inverse targeting of drugs to reticuloendothelial system-rich organs by lipid microemulsion emulsified with poloxamer-338. Int J Pharm. 1995;113(2):175–87.

    Article  CAS  Google Scholar 

  13. Zhang H, Shen Y, Bao Y, He Y, Feng F, Zheng X. Characterization and synergistic antimicrobial activities of food-grade dilution-stable microemulsions against Bacillus subtilis. Food Res Int. 2008;41(5):495–9.

    Article  CAS  Google Scholar 

  14. Djordjevic L, Primorac M, Stupar M, Krajisnik D. Characterization of caprylocaproyl macrogolglycerides based microemulsion drug delivery vehicles for an amphiphilic drug. Int J Pharm. 2004;271(1–2):11–9.

    Article  CAS  PubMed  Google Scholar 

  15. Boonme P, Krauel K, Graf A, Rades T, Junyaprasert VB. Characterization of microemulsion structures in the pseudoternary phase diagram of isopropyl palmitate/water/Brij 97:1-butanol. AAPS PharmSciTech. 2006;7(2):99–104.

    Article  Google Scholar 

  16. Ghosh V, Saranya S, Mukherjee A, Chandrasekaran N. Antibacterial microemulsion prevents sepsis and triggers healing of wound in wistar rats. Colloids Surf B: Biointerfaces. 2013;105:152–7.

    Article  CAS  PubMed  Google Scholar 

  17. Teixeira PC, Leite GM, Domingues RJ, Silva J, Gibbs PA, Ferreira JP. Antimicrobial effects of a microemulsion and a nanoemulsion on enteric and other pathogens and biofilms. Int J Food Microbiol. 2007;118(1):15–9.

    Article  CAS  PubMed  Google Scholar 

  18. Hamed SF, Sadek Z, Edris A. Antioxidant and antimicrobial activities of clove bud essential oil and eugenol nanoparticles in alcohol-free microemulsion. J Oleo Sci. 2012;61(11):641–8.

    Article  CAS  PubMed  Google Scholar 

  19. Surjyanarayan M, Snigdha SM, Naazneen S. Design and development of Saquinavir microemulsion for the oral bioavailability enhancement. Int J PharmTech Res. 2009;1:1442–8.

    CAS  Google Scholar 

  20. Borhade V, Nair H, Hegde D. Design and evaluation of self-microemulsifying drug delivery system (SMEDDS) of tacrolimus. AAPS PharmSciTech. 2008;9(1):13–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hu L, Wu H, Niu F, Yan C, Yang X, Jia Y. Design of fenofibrate microemulsion for improved bioavailability. Int J Pharm. 2011;420(2):251–5.

    Article  CAS  PubMed  Google Scholar 

  22. Dantas TNC, Silva HSRC, Neto AAD, Marcucci MC, Maciel MAM. Development of a new propolis microemulsion system for topical applications. Rev Bras Farmacogn. 2010;20(3):368–75.

    Article  CAS  Google Scholar 

  23. Yi C, Zhong H, Tong S, Cao X, Firempong CK, Liu H, et al. Enhanced oral bioavailability of a sterol-loaded microemulsion formulation of Flammulina velutipes, a potential antitumor drug. Int J Nanomedicine. 2012;7:5067–78.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Spernath A, Yaghmur A, Aserin A, Hoffman RE, Garti N. Food-grade microemulsions based on nonionic emulsifiers: media to enhance lycopene solubilization. J Agric Food Chem. 2002;50(23):6917–22.

    Article  CAS  PubMed  Google Scholar 

  25. Rao J, McClements DJ. Formation of flavor oil microemulsions, nanoemulsions and emulsions: influence of composition and preparation method. J Agric Food Chem. 2011;59(9):5026–35.

    Article  CAS  PubMed  Google Scholar 

  26. Jha SK, Karki R, Venkatesh DP, Geethalakshami A. Formulation development and characterization of microemulsion drug delivery systems containing antiulcer drug. Int J Drug Dev Res. 2011;3(4):336–43.

    CAS  Google Scholar 

  27. Lee H, Soo PL, Liu J, Butler M, Allen C. Polymeric micelles for formulation of anti-cancer drugs. In: Amiji MM, editor. Nanotechnology for Cancer Therapy. CRC Press; 2006. p. 329.

  28. Tian Q, Ren F, Xu Z, Xie Y, Zhang S. Preparation of high solubilizable microemulsion of naproxen and its solubilization mechanism. Int J Pharm. 2012;426(1–2):202–10.

    Article  CAS  PubMed  Google Scholar 

  29. Biresh KS, Shiv SH. Microemulsion drug delivery system for oral bioavailability enhancement of glipizide. J Adv Pharm Technol Res. 2011;1(4):195–200.

    Google Scholar 

  30. Mrestani Y, Behbood L, Hartl A, Neubert RH. Microemulsion and mixed micelle for oral administration as new drug formulations for highly hydrophilic drugs. Eur J Pharm Biopharm. 2010;74(2):219–22.

    Article  CAS  PubMed  Google Scholar 

  31. Solanki SS, Sarkar B, Dhanwani RK. Microemulsion drug delivery system: for bioavailability enhancement of ampelopsin. ISRN Pharm. 2012;2012:1–4.

    Google Scholar 

  32. Pestana KC, Formariz TP, Franzini CM, Sarmento VH, Chiavacci LA, Scarpa MV, et al. Oil-in-water lecithin-based microemulsions as a potential delivery system for amphotericin B. Colloids Surf B: Biointerfaces. 2008;66(2):253–9.

    Article  CAS  PubMed  Google Scholar 

  33. Gao Z-G, Choi H-G, Shin H-J, Park K-M, Lim S-J, Hwang K-J, et al. Physicochemical characterization and evaluation of a microemulsion system for oral delivery of cyclosporin A. Int J Pharm. 1998;61(1):75–86.

    Article  Google Scholar 

  34. Acharya A, Sanyal SK, Moulik SP. Physicochemical investigations on microemulsification of eucalyptol and water in presence of polyoxyethylene (4) lauryl ether (Brij-30) and ethanol. Int J Pharm. 2001;229(1–2):213–26.

    Article  CAS  PubMed  Google Scholar 

  35. Agatonovic-Kustrin S, Glass BD, Wisch MH, Alany RG. Prediction of a stable microemulsion formulation for the oral delivery of a combination of antitubercular drugs using ANN methodology. Pharm Res. 2003;20(11):1760–5.

    Article  CAS  PubMed  Google Scholar 

  36. Zeng Z, Zhou G, Wang X, Huang EZ, Zhan X, Liu J, et al. Preparation, characterization and relative bioavailability of oral elemene o/w microemulsion. Int J Nanomedicine. 2010;5:567–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sapra B, Bhandari S, Sood J, Jindal M, Tiwary A, Tiwary A. A critical appraisal of microemulsions for drug delivery: part I. Ther Deliv. 2013;4(12):1547–64.

    Article  CAS  PubMed  Google Scholar 

  38. He CX, Gao J-Q, Gao JQ. Microemulsions as drug delivery systems to improve the solubility and the bioavailability of poorly water-soluble drugs. Expert Opin Drug Deliv. 2010;7(4):445–60.

    Article  CAS  PubMed  Google Scholar 

  39. Barton AFM. Handbook of solubility parameters and other cohesive parameters. New York; 1983.

  40. Hancock BC, York P, Rowe RC. The use of solubility parameters in pharmaceutical dosage form design. Int J Pharm. 1997;148(1):1–21.

    Article  CAS  Google Scholar 

  41. Lim SM, Pang ZW, Tan HY, Shaikh M, Adinarayana G, Garg S. Enhancement of docetaxel solubility using binary and ternary solid dispersion systems. Drug Dev Ind Pharm. 2015;41(11):1847–55.

    Article  CAS  PubMed  Google Scholar 

  42. Beerbower A, Hill MW. McCutcheon’s detergents and emulsifiers annual. Ridgewood, NJ: Allured Publishing Co; 1971.

    Google Scholar 

  43. Hansen CM. The three dimensional solubility parameter - key to paint component affinities ii. - dyes, emulsifiers, mutual solubility and compatibility, and pigments. J Paint Technol. 1967;39(511):505–10.

    CAS  Google Scholar 

  44. Hildebrand JH, Prausnitz JM, Scott RL. Regular and related solutions. New York: Van Nostrand Reinhold; 1970.

    Google Scholar 

  45. Holtzscherer C, Candau F. Application of the cohesive energy ratio concept (CER) to the formation of polymerizable microemulsions. Colloids Surf. 1988;29(4):411–23.

    Article  CAS  Google Scholar 

  46. Xavier-Junior FH, Maciuk A, Morais ARV, Alencar EN, Rehder VLG, Egito EST, et al. Copaiba oil analysis by gas-chromatography coupled to mass spectroscopy and flame ionization detection. Submitted for publication.

  47. van Krevelen DW, Hoftyzer PJ. Properties of polymers: their estimation and correlation with chemical structure. Amsterdam: Elsevier; 1976.

    Google Scholar 

  48. Griffin WC. Classification of surface-active agents by ‘HLB’. J Soc Cosmet Chem. 1949;1(5):311–26.

    Google Scholar 

  49. Griffin WC. Calculation of HLB values of non-ionic surfactants. J Soc Cosmet Chem. 1954;5(4):249–56.

    Google Scholar 

  50. Alencar EN, Xavier-Júnior FH, Morais ARV, Dantas TRF, Dantas-Santos N, Verissimo LM, et al. Chemical characterization and antimicrobial activity evaluation of natural oil nanostructured emulsions. J Nanosci Nanotechnol. 2015;15(1):880–8.

    Article  CAS  PubMed  Google Scholar 

  51. Xavier-Júnior FH, Silva KGH, Farias IEG, Morais ARV, Alencar EN, Araújo IB, et al. Prospective study for the development of emulsion systems containing natural oil products. J Drug Delivery Sci Technol. 2012;22(4):367–72.

    Article  Google Scholar 

  52. Formariz TP, Chiavacci LA, Scarpa MV, Silva-Júnior AA, Egito EST, Terrugi CHB, et al. Structure and viscoelastic behavior of pharmaceutical biocompatible anionic microemulsions containing the antitumoral drug compound doxorubicin. Colloids Surf B: Biointerfaces. 2010;77(1):47–53.

    Article  CAS  PubMed  Google Scholar 

  53. Acharya DP, Hartley PG. Progress in microemulsion characterization. Curr Opin Colloid Interface Sci. 2012;17(5):274–80.

    Article  CAS  Google Scholar 

  54. Legault J, Pichette A. Potentiating effect of beta-caryophyllene on anticancer activity of alpha-humulene, isocaryophyllene and paclitaxel. J Pharm Pharmacol. 2007;59(12):1643–7.

    Article  CAS  PubMed  Google Scholar 

  55. Prakash AS. Selecting surfactants for the maximum inhibition of the activity of the multidrug resistance efflux pump transporter, P-glycoprotein: conceptual development. J Excip Food Chem. 2010;1(3):51–9.

    Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

This work was financially supported by the “coordenação de aperfeiçoamento de pessoal de nível superior” CAPES COFECUB 721/11. The authors wish to thank Dr Alexandre Maciuk for his help in the dosage of Copaiba Oil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine Vauthier.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 75 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xavier-Junior, F.H., Huang, N., Vachon, JJ. et al. Match of Solubility Parameters Between Oil and Surfactants as a Rational Approach for the Formulation of Microemulsion with a High Dispersed Volume of Copaiba Oil and Low Surfactant Content. Pharm Res 33, 3031–3043 (2016). https://doi.org/10.1007/s11095-016-2025-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-016-2025-y

KEY WORDS

Navigation