Skip to main content

Advertisement

Log in

Anti-cancer Antibody Trastuzumab-Melanotransferrin Conjugate (BT2111) for the Treatment of Metastatic HER2+ Breast Cancer Tumors in the Brain: an In-Vivo Study

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

The ability of human melanotransferrin (hMTf) to carry a therapeutic concentration of trastuzumab (BTA) in the brain after conjugation (in the form of trastuzumab-melanotransferrin conjugate, BT2111 conjugate) was investigated by measuring the reduction of the number and size of metastatic human HER2+ breast cancer tumors in a preclinical model of brain metastases of breast cancer.

Methods

Human metastatic brain seeking breast cancer cells were injected in NuNu mice (n = 6–12 per group) which then developed experimental brain metastases. Drug uptake was analyzed in relation to metastasis size and blood-tumor barrier permeability. To investigate in-vivo activity against brain metastases, equimolar doses of the conjugate, and relevant controls (hMTf and BTA) in separate groups were administered biweekly after intracardiac injection of the metastatic cancer cells.

Results

The trastuzumab-melanotransferrin conjugate (BT2111) reduced the number of preclinical human HER2+ breast cancer metastases in the brain by 68% compared to control groups. Tumors which remained after treatment were 46% smaller than the control groups. In contrast, BTA alone had no effect on reducing number of metastases, and was associated with only a minimal reduction in metastasis size.

Conclusions

The results suggest the novel trastuzumab-melanotransferrin conjugate (BT2111) may have utility in treating brain metastasis and validate hMTf as a potential vector for antibody transport across the Blood Brain Barrier (BBB).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

BBB:

Blood brain barrier

BDT:

Brain distant to tumor

BT2111 BTA-MTf:

Antibody trastuzumab-melanotransferrin conjugate

BTA:

Trastuzumab

BTB:

Blood tumor barrier

CT:

Computed tomography

ER:

Estrogen receptor

FDA:

Food and drug administration

HER2 HER-2/neu or c-erbB-2:

Human epidermal growth factor receptor 2

hMTf:

human Melanotransferrin

Kin :

Drug uptake

LRP:

Low density lipoprotein receptor related protein

MDA-MB-231-Her2:

Metastatic brain seeking breast cancer cells

MNF:

Anti-cytokeratin mouse monoclonal IgG antibody

MRI:

Magnetic resonance imaging

p97:

Melanoma tumor antigen

PBS:

Phosphate buffered saline

Tf:

Transferrin

References

  1. Leone JP, Lee AV, Brufsky AM. Prognostic factors and survival of patients with brain metastasis from breast cancer who underwent craniotomy. Cancer Med. 2015;4(7):989–94.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Colzani E, Liljegren A, Johansson AL, Adolfsson J, Hellborg H, Hall PF, et al. Prognosis of patients with breast cancer: causes of death and effects of time since diagnosis, age, and tumor characteristics. J Clin Oncol. 2011;29(30):4014–21.

    Article  PubMed  Google Scholar 

  3. Zimm S, Wampler GL, Stablein D, Hazra T, Young HF. Intracerebral metastases in solid-tumor patients: natural history and results of treatment. Cancer. 1981;48(2):384–94.

    Article  CAS  PubMed  Google Scholar 

  4. Miller KD, Weathers T, Haney LG, Timmerman R, Dickler M, Shen J, et al. Occult central nervous system involvement in patients with metastatic breast cancer: prevalence, predictive factors and impact on overall survival. Ann Oncol. 2003;14(7):1072–7.

    Article  CAS  PubMed  Google Scholar 

  5. Tsukada Y, Fouad A, Pickren JW, Lane WW. Central nervous system metastasis from breast carcinoma. Autopsy Study Cancer. 1983;52(12):2349–54.

    CAS  PubMed  Google Scholar 

  6. Riihimaki M, Thomsen H, Brandt A, Sundquist J, Hemminki K. Death causes in breast cancer patients. Ann Oncol. 2012;23(3):604–10.

    Article  CAS  PubMed  Google Scholar 

  7. Sanchez-Munoz A, Plata-Fernandez Y, Fernandez M, Jaen-Morago A, Fernandez-Navarro M, de la Torre-Cabrera C, Ramirez-Tortosa C, Pascual J, Alba E, Sanchez-Rovira P. Tumor histological subtyping determined by hormone receptors and HER2 status defines different pathological complete response and outcome to dose-dense neoadjuvant chemotherapy in breast cancer patients. Clin Transl Oncol. 2013.

  8. de la Monte SM, Hutchins GM, Moore GW. Estrogen and progesterone receptors in prediction of metastatic behavior of breast carcinoma. Am J Med. 1984;76(1):11–7.

    Article  PubMed  Google Scholar 

  9. Knight WA, Livingston RB, Gregory EJ, McGuire WL. Estrogen receptor as an independent prognostic factor for early recurrence in breast cancer. Cancer Res. 1977;37(12):4669–71.

    CAS  PubMed  Google Scholar 

  10. Sugimoto H, Nakagawa T, Sato T, Nagahara M, Ishiba T, Kasahara M, et al. A long-surviving case of HER2-positive breast cancer with brain metastasis treated by multidisciplinary therapy. Gan to Kagaku Ryoho. 2012;39(12):2071–3.

    PubMed  Google Scholar 

  11. Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science. 1987;235(4785):177–82.

    Article  CAS  PubMed  Google Scholar 

  12. Slamon DJ, Godolphin W, Jones LA, Holt JA, Wong SG, Keith DE, et al. Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science. 1989;244(4905):707–12.

    Article  CAS  PubMed  Google Scholar 

  13. Park YH, Park MJ, Ji SH, Yi SY, Lim DH, Nam DH, et al. Trastuzumab treatment improves brain metastasis outcomes through control and durable prolongation of systemic extracranial disease in HER2-overexpressing breast cancer patients. Br J Cancer. 2009;100(6):894–900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Blumenthal GM, Scher NS, Cortazar P, Chattopadhyay S, Tang S, Song P, et al. First FDA approval of dual anti-HER2 regimen: pertuzumab in combination with trastuzumab and docetaxel for HER2-positive metastatic breast cancer. Clin Cancer Res. 2013;19(18):4911–6.

    Article  CAS  PubMed  Google Scholar 

  15. Slamon DJ, Leyland-Jones B, Shak S, Fuchs H, Paton V, Bajamonde A, et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med. 2001;344(11):783–92.

    Article  CAS  PubMed  Google Scholar 

  16. Olson EM, Abdel-Rasoul M, Maly J, Wu CS, Lin NU, Shapiro CL. Incidence and risk of central nervous system metastases as site of first recurrence in patients with HER2-positive breast cancer treated with adjuvant trastuzumab. Ann Oncol. 2013;24(6):1526–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rothenberger S, Food MR, Gabathuler R, Kennard ML, Yamada T, Yasuhara O, et al. Coincident expression and distribution of melanotransferrin and transferrin receptor in human brain capillary endothelium. Brain Res. 1996;712(1):117–21.

    Article  CAS  PubMed  Google Scholar 

  18. Suryo Rahmanto Y, Dunn LL, Richardson DR. The melanoma tumor antigen, melanotransferrin (p97): a 25-year hallmark--from iron metabolism to tumorigenesis. Oncogene. 2007;26(42):6113–24.

    Article  CAS  PubMed  Google Scholar 

  19. Yi X, Manickam DS, Brynskikh A, Kabanov AV. Agile delivery of protein therapeutics to CNS. J Control Release. 2014;190:637–63.

    Article  CAS  PubMed  Google Scholar 

  20. Demeule M, Poirier J, Jodoin J, Bertrand Y, Desrosiers RR, Dagenais C, et al. High transcytosis of melanotransferrin (P97) across the blood-brain barrier. J Neurochem. 2002;83(4):924–33.

    Article  CAS  PubMed  Google Scholar 

  21. Moroo I, Ujiie M, Walker BL, Tiong JW, Vitalis TZ, Karkan D, et al. Identification of a novel route of iron transcytosis across the mammalian blood-brain barrier. Microcirculation. 2003;10(6):457–62.

    CAS  PubMed  Google Scholar 

  22. Karkan D, Pfeifer C, Vitalis TZ, Arthur G, Ujiie M, Chen Q, et al. A unique carrier for delivery of therapeutic compounds beyond the blood-brain barrier. PLoS One. 2008;3(6), e2469.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Demeule M, Regina A, Jodoin J, Laplante A, Dagenais C, Berthelet F, et al. Drug transport to the brain: key roles for the efflux pump P-glycoprotein in the blood-brain barrier. Vasc Pharmacol. 2002;38(6):339–48.

    Article  CAS  Google Scholar 

  24. Tang Y, Han T, Everts M, Zhu ZB, Gillespie GY, Curiel DT, et al. Directing adenovirus across the blood-brain barrier via melanotransferrin (P97) transcytosis pathway in an in vitro model. Gene Ther. 2007;14(6):523–32.

    Article  CAS  PubMed  Google Scholar 

  25. biOasis. biOasis’s Herceptin®-BT2111 Stops Human Breast Cancer Tumor Growth in Animals. biOasis Technologies Inc.; Available from: http://www.bioasis.ca/news/2012/120905.htm.

  26. Hutchison R, Vitalis TZ, Gabathuler R. P97-antibody conjugates and methods of use. In. USA: Bioasis Technologies Inc.; 2013. US Patent; WO2013006706 A1, CA2840221A1, CN103747807A, EP2717917A1, EP2717917B1, US9150846, US20130183368, US20160053237.

  27. Charles River Laboratories International I. NU/NU Nude Mouse (Crl:NU-Foxn1nu). Charles River Laboratories International, Inc.; Available from: http://www.criver.com/products-services/basic-research/find-a-model/nu-nu-nude-mouse.

  28. Lockman PR, Mittapalli RK, Taskar KS, Rudraraju V, Gril B, Bohn KA, et al. Heterogeneous blood-tumor barrier permeability determines drug efficacy in experimental brain metastases of breast cancer. Clin Cancer Res. 2010;16(23):5664–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Goldstein J, Jerian S, Schechter G, Neeman T, Green MD. FDA clinical review of BLA 98-0369 (Herceptin®, Trastuzumab, rhuMAb HER2). In: Food and Drug Administration (FDA) CfBEaR, editor. Product approval information, licensing action. USA: CBER; 1998. p. 49.

    Google Scholar 

  30. Jay TM, Lucignani G, Crane AM, Jehle J, Sokoloff L. Measurement of local cerebral blood flow with [14C]iodoantipyrine in the mouse. J Cereb Blood Flow Metab. 1988;8(1):121–9.

    Article  CAS  PubMed  Google Scholar 

  31. Williams JL, Shea M, Furlan AJ, Little JR, Jones SC. Importance of freezing time when iodoantipyrine is used for measurement of cerebral blood flow. Am J Physiol. 1991;261(1 Pt 2):H252–6.

    CAS  PubMed  Google Scholar 

  32. de Boer AG, Gaillard PJ. Strategies to improve drug delivery across the blood-brain barrier. Clin Pharmacokinet. 2007;46(7):553–76.

    Article  PubMed  Google Scholar 

  33. Lillis AP, Van Duyn LB, Murphy-Ullrich JE, Strickland DK. LDL receptor-related protein 1: unique tissue-specific functions revealed by selective gene knockout studies. Physiol Rev. 2008;88(3):887–918.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Olson EM, Najita JS, Sohl J, Arnaout A, Burstein HJ, Winer EP, et al. Clinical outcomes and treatment practice patterns of patients with HER2-positive metastatic breast cancer in the post-trastuzumab era. Breast. 2013;22(4):525–31.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Loi S, de Azambuja E, Pugliano L, Sotiriou C, Piccart MJ. HER2-overexpressing breast cancer: time for the cure with less chemotherapy? Curr Opin Oncol. 2011;23(6):547–58.

    Article  CAS  PubMed  Google Scholar 

  36. Abbott NJ, Patabendige AA, Dolman DE, Yusof SR, Begley DJ. Structure and function of the blood-brain barrier. Neurobiol Dis. 2010;37(1):13–25.

    Article  CAS  PubMed  Google Scholar 

  37. Pestalozzi B, Brignoli S. Traztuzumab in CSF. J Clin Oncol. 2000;18(11):2349–51.

    CAS  PubMed  Google Scholar 

  38. Rossi M, Carioli G, Bonifazi M, Zambelli A, Franchi M, Moja L, et al. Trastuzumab for HER2+ metastatic breast cancer in clinical practice: Cardiotoxicity and overall survival. Eur J Cancer. 2016;52:41–9.

    Article  CAS  PubMed  Google Scholar 

  39. Saini KS, Azim Jr HA, Metzger-Filho O, Loi S, Sotiriou C, de Azambuja E, et al. Beyond trastuzumab: new treatment options for HER2-positive breast cancer. Breast. 2011;20 Suppl 3:S20–7.

    Article  PubMed  Google Scholar 

  40. Kennard ML, Feldman H, Yamada T, Jefferies WA. Serum levels of the iron binding protein p97 are elevated in Alzheimer’s disease. Nat Med. 1996;2(11):1230–5.

    Article  CAS  PubMed  Google Scholar 

  41. Lambert LA, Perri H, Halbrooks PJ, Mason AB. Evolution of the transferrin family: conservation of residues associated with iron and anion binding. Comp Biochem Physiol B Biochem Mol Biol. 2005;142(2):129–41.

    Article  PubMed  Google Scholar 

  42. Pardridge WM. Advances in cell biology of blood-brain barrier transport. Semin Cell Biol. 1991;2(6):419–26.

    CAS  PubMed  Google Scholar 

  43. Fillebeen C, Descamps L, Dehouck MP, Fenart L, Benaissa M, Spik G, et al. Receptor-mediated transcytosis of lactoferrin through the blood-brain barrier. J Biol Chem. 1999;274(11):7011–7.

    Article  CAS  PubMed  Google Scholar 

  44. Friden PM, Walus LR. Transport of proteins across the blood-brain barrier via the transferrin receptor. Adv Exp Med Biol. 1993;331:129–36.

    Article  CAS  PubMed  Google Scholar 

  45. Pardridge WM, Eisenberg J, Yang J. Human blood-brain barrier transferrin receptor. Metabolism. 1987;36(9):892–5.

    Article  CAS  PubMed  Google Scholar 

  46. Demeule M, Bertrand Y, Michaud-Levesque J, Jodoin J, Rolland Y, Gabathuler R, et al. Regulation of plasminogen activation: a role for melanotransferrin (p97) in cell migration. Blood. 2003;102(5):1723–31.

    Article  CAS  PubMed  Google Scholar 

  47. Villanueva MT. Drug therapy: smuggling trastuzumab into the brain. Nat Rev Clin Oncol. 2013;10(12):669.

    Article  PubMed  Google Scholar 

  48. biOasis. Transcend Platform. biOasis Technologies Inc.; 2016 Available from: http://www.bioasis.ca/transcend/.

  49. Sendur MA, Uncu D, Zengin N. Longest progression-free survival with lapatinib and capecitabine combination followed by trastuzumab in HER2-positive brain metastatic breast cancer. Med Oncol. 2014;31(4):890.

    Article  PubMed  Google Scholar 

  50. Mutlu H, Buyukcelik A. The combination of weekly trastuzumab plus vinorelbine may be preferable regimen in HER-2 positive breast cancer patients with brain metastasis. J Oncol Pharm Pract. 2015;21(4):310–2.

    Article  CAS  PubMed  Google Scholar 

  51. Kodack DP, Chung E, Yamashita H, Incio J, Duyverman AM, Song Y, et al. Combined targeting of HER2 and VEGFR2 for effective treatment of HER2-amplified breast cancer brain metastases. Proc Natl Acad Sci. 2012;109(45):E3119–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Tamura K, Kurihara H, Yonemori K, Tsuda H, Suzuki J, Kono Y, et al. 64Cu-DOTA-trastuzumab PET imaging in patients with HER2-positive breast cancer. J Nucl Med. 2013;54(11):1869–75.

    Article  CAS  PubMed  Google Scholar 

  53. Kurihara H, Hamada A, Yoshida M, Shimma S, Hashimoto J, Yonemori K, et al. (64)Cu-DOTA-trastuzumab PET imaging and HER2 specificity of brain metastases in HER2-positive breast cancer patients. EJNMMI Res. 2015;5:8.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Lambert JM, Chari RV. Ado-trastuzumab Emtansine (T-DM1): an antibody-drug conjugate (ADC) for HER2-positive breast cancer. J Med Chem. 2014;57(16):6949–64.

    Article  CAS  PubMed  Google Scholar 

  55. Krop IE, Modi S, LoRusso PM, Pegram M, Guardino E, Althaus B, et al. Phase 1b/2a study of trastuzumab emtansine (T-DM1), paclitaxel, and pertuzumab in HER2-positive metastatic breast cancer. Breast Cancer Res. 2016;18(1):34.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Bartsch R, Berghoff AS, Vogl U, Rudas M, Bergen E, Dubsky P, et al. Activity of T-DM1 in Her2-positive breast cancer brain metastases. Clin Exp Metastasis. 2015;32(7):729–37.

    Article  CAS  PubMed  Google Scholar 

  57. Bergstrom DA, Bodyak N, Yurkovetskiy A, Park PU, DeVit M, Yin M, et al. Abstract LB-231: a novel, highly potent HER2-targeted antibody-drug conjugate (ADC) for the treatment of low HER2-expressing tumors and combination with trastuzumab-based regimens in HER2-driven tumors. Cancer Res. 2015;75(15 Supplement):LB-231.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

This research was supported by grants from the National Cancer Institute (R01CA166067-01A1), Department of Defense Breast Cancer Research Program (W81XWH-062-0033), and BiOasis awarded to P. Lockman. Additional support for this research was provided through the National Institute of General Medical Sciences of the National Institutes of Health (CTSI Award: U54GM104942, and the CoBRE P30 GM103488).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul R. Lockman.

Additional information

Mohamed Ismail Nounou and Chris E. Adkins are both considered as first authors.

Mohamed Ismail Nounou and Chris E. Adkins contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nounou, M.I., Adkins, C.E., Rubinchik, E. et al. Anti-cancer Antibody Trastuzumab-Melanotransferrin Conjugate (BT2111) for the Treatment of Metastatic HER2+ Breast Cancer Tumors in the Brain: an In-Vivo Study. Pharm Res 33, 2930–2942 (2016). https://doi.org/10.1007/s11095-016-2015-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-016-2015-0

KEY WORDS

Navigation