Pharmaceutical Research

, Volume 33, Issue 9, pp 2298–2306 | Cite as

Proof-of-Concept of Polymeric Sol-Gels in Multi-Drug Delivery and Intraoperative Image-Guided Surgery for Peritoneal Ovarian Cancer

  • Matthew McKenzie
  • David Betts
  • Amy Suh
  • Kathryn Bui
  • Rui Tang
  • Kexian Liang
  • Samuel Achilefu
  • Glen S. Kwon
  • Hyunah Cho
Research Paper



The purpose of this study is to investigate a sol–gel transition property and content release profiles for thermosensitive poly-(D,L-lactide-co-glycolide)-block-poly-(ethylene glycol)-block-poly-(D,L-lactide-co-glycolide) (PLGA-b-PEG-b-PLGA) hydrogels carrying paclitaxel, rapamycin, and LS301, and to present a proof-of-concept that PLGA-b-PEG-b-PLGA hydrogels carrying paclitaxel, rapamycin, and LS301, called TheranoGel, exhibit excellent theranostic activity in peritoneal ES-2-luc ovarian cancer xenograft mice.


Thermosensitive PLGA-b-PEG-b-PLGA hydrogels carrying paclitaxel, rapamycin, and LS301, individually or in combination, were prepared via a lyophilization method, characterized with content release kinetics, and assessed with theranostic activity in ES-2-luc xenograft mice.


A thermosensitive PLGA-b-PEG-b-PLGA sol–gel system was able to entrain 3 poorly water-soluble payloads, paclitaxel, rapamycin, and LS301 (TheranoGel). TheranoGel made a sol-to-gel transition at 37°C and slowly released 3 drugs at a simultaneous release rate in response to the physical dissociation of hydrogels in vitro. TheranoGel enabled loco-regional delivery of multi-drugs by forming a gel-depot in the peritoneal cavity of ES-2-luc xenograft mice. An intraperitoneal (IP) administration of TheranoGel resulted in excellent therapeutic and diagnostic activities, leading to the improved peritoneal surgery in ES-2-luc xenograft mice.


TheranoGel prepared via a facile lyophiliation method enabled successful IP delivery of multi-drugs and exhibited excellent theranostic activity in vivo.


hydrogels intraperitoneal ovarian cancer theranostics thermosensitive 





Bioluminescence intensity










Cysteine-glycine-arginine-aspartic acid-serine-proline-cystein-lysine-cypate




Mammalian target of rapamycin


Near infrared


Poly-(ethylene glycol)-block-(D,L-lactide)


(D,L-lactide-co-glycolide)-block-poly-(ethylene glycol)-block-poly-(D,L-lactide-co-glycolide)


PLGA-b-PEG-b-PLGA hydrogels carrying paclitaxel, rapamycin, and LS301


PEG-b-PLA micelles carrying paclitaxel, rapamycin, and LS301



This project was supported by St. Louis College of Pharmacy Faculty Research Incentive Fund.

Supplementary material

11095_2016_1968_Fig5_ESM.gif (12 kb)

(GIF 11 kb)

11095_2016_1968_MOESM1_ESM.tif (32 kb)
High resolution image (TIF 32 kb)
11095_2016_1968_MOESM2_ESM.avi (229 kb)
ESM 2 (AVI 229 kb)
11095_2016_1968_MOESM3_ESM.avi (107 kb)
ESM 3 (AVI 107 kb)


  1. 1.
    Fagotti A, Gallotta V, Romano F, Fanfani F, Rossitto C, Naldini A, et al. Peritoneal carcinosis of ovarian origin. World J Gastrointest Oncol. 2010;2(2):102–8.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Ushijima K. Treatment for recurrent ovarian cancer-at first relapse. J Oncol. 2010;2010:497429.CrossRefPubMedGoogle Scholar
  3. 3.
    Markman M. Intraperitoneal antineoplastic drug delivery: rationale and results. Lancet Oncol. 2003;4(5):277–83.CrossRefPubMedGoogle Scholar
  4. 4.
    Markman M, Walker JL. Intraperitoneal chemotherapy of ovarian cancer: a review, with a focus on practical aspects of treatment. J Clin Oncol. 2006;24(6):988–94.CrossRefPubMedGoogle Scholar
  5. 5.
    Elstad NL, Fowers KD. OncoGel (ReGel/paclitaxel)--clinical applications for a novel paclitaxel delivery system. Adv Drug Deliv Rev. 2009;61(10):785–94.CrossRefPubMedGoogle Scholar
  6. 6.
    Cho H, Kwon GS. Thermosensitive poly-(d, l-lactide-co-glycolide)-block-poly(ethylene glycol)-block-poly-(d, l-lactide-co-glycolide) hydrogels for multi-drug delivery. J Drug Target. 2014;22(7):669–77.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Ellard SL, Clemons M, Gelmon KA, Norris B, Kennecke H, Chia S, et al. Randomized phase II study comparing two schedules of everolimus in patients with recurrent/metastatic breast cancer: NCIC Clinical Trials Group IND.163. J Clin Oncol. 2009;27(27):4536–41.CrossRefPubMedGoogle Scholar
  8. 8.
    Mita MM, Mita AC, Chu QS, Rowinsky EK, Fetterly GJ, Goldston M, et al. Phase I trial of the novel mammalian target of rapamycin inhibitor deforolimus (AP23573; MK-8669) administered intravenously daily for 5 days every 2 weeks to patients with advanced malignancies. J Clin Oncol. 2008;26(3):361–7.CrossRefPubMedGoogle Scholar
  9. 9.
    O’Donnell A, Faivre S, Burris 3rd HA, Rea D, Papadimitrakopoulou V, Shand N, et al. Phase I pharmacokinetic and pharmacodynamic study of the oral mammalian target of rapamycin inhibitor everolimus in patients with advanced solid tumors. J Clin Oncol. 2008;26(10):1588–95.CrossRefPubMedGoogle Scholar
  10. 10.
    Liu Y, Bauer AQ, Akers WJ, Sudlow G, Liang K, Shen D, et al. Hands-free, wireless goggles for near-infrared fluorescence and real-time image-guided surgery. Surgery. 2011;149(5):689–98.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Cho H, Lai TC, Kwon GS. Poly(ethylene glycol)-block-poly(epsilon-caprolactone) micelles for combination drug delivery: evaluation of paclitaxel, cyclopamine and gossypol in intraperitoneal xenograft models of ovarian cancer. J Control Release. 2013;166(1):1–9.CrossRefPubMedGoogle Scholar
  12. 12.
    Shaw TJ, Senterman MK, Dawson K, Crane CA, Vanderhyden BC. Characterization of intraperitoneal, orthotopic, and metastatic xenograft models of human ovarian cancer. Mol Ther. 2004;10(6):1032–42.CrossRefPubMedGoogle Scholar
  13. 13.
    Ahmed EM. Hydrogel: Preparation, characterization, and applications: a review. J Adv Res. 2015;6(2):105–21.CrossRefPubMedGoogle Scholar
  14. 14.
    Lee DSSMS, Kim SW, Lee H, Park I, Chang T. Novel thermoreversible gelation of biodegradable PLGA-block-PEO-block-PLGA triblock copolymers in aqueous solution. Macromol Rapid Commun. 2001;22(8):587–92.CrossRefGoogle Scholar
  15. 15.
    Qiao M, Chen D, Ma X, Liu Y. Injectable biodegradable temperature-responsive PLGA-PEG-PLGA copolymers: synthesis and effect of copolymer composition on the drug release from the copolymer-based hydrogels. Int J Pharm. 2005;294(1-2):103–12.CrossRefPubMedGoogle Scholar
  16. 16.
    Hoare TR, Kohane DS. Hydrogels in drug delivery: Progress and challenges. Polymer. 2008;49(8):1993–2007.CrossRefGoogle Scholar
  17. 17.
    Kamel RM. Prevention of postoperative peritoneal adhesions. Eur J Obstet Gynecol Reprod Biol. 2010;150(2):111–8.CrossRefPubMedGoogle Scholar
  18. 18.
    Liakakos T, Thomakos N, Fine PM, Dervenis C, Young RL. Peritoneal adhesions: etiology, pathophysiology, and clinical significance. recent advances in prevention and management. Dig Surg. 2001;18(4):260–73.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Matthew McKenzie
    • 1
  • David Betts
    • 1
  • Amy Suh
    • 1
  • Kathryn Bui
    • 1
  • Rui Tang
    • 2
  • Kexian Liang
    • 2
  • Samuel Achilefu
    • 2
  • Glen S. Kwon
    • 3
    • 4
  • Hyunah Cho
    • 1
  1. 1.Department of Pharmaceutical and Administrative SciencesSt. Louis College of PharmacySt. LouisUSA
  2. 2.Department of RadiologyWashington University School of MedicineSt. LouisUSA
  3. 3.Pharmaceutical Sciences Division, School of PharmacyUniversity of WisconsinMadisonUSA
  4. 4.Faculty of PharmacyKing Abdulaziz UniversityJeddahSaudi Arabia

Personalised recommendations