Skip to main content

Advertisement

Log in

Targeting Nanomedicines to Prostate Cancer: Evaluation of Specificity of Ligands to Two Different Receptors In Vivo

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

This manuscript utilised in vivo multispectral imaging to demonstrate the efficacy of two different nanomedicine formulations for targeting prostate cancer.

Methods

Pegylated hyperbranched polymers were labelled with fluorescent markers and targeting ligands against two different prostate cancer markers; prostate specific membrane antigen (PSMA) and the protein kinase, EphrinA2 receptor (EphA2). The PSMA targeted nanomedicine utilised a small molecule glutamate urea inhibitor of the protein, while the EphA2 targeted nanomedicine was conjugated to a single-chain variable fragment based on the antibody 4B3 that has shown high affinity to the receptor.

Results

Hyperbranched polymers were synthesised bearing the different targeting ligands. In the case of the EphA2-targeting nanomedicine, significant in vitro uptake was observed in PC3 prostate cancer cells that overexpress the receptor, while low uptake was observed in LNCaP cells (that have minimal expression of this receptor). Conversely, the PSMA-targeted nanomedicine showed high uptake in LNCaP cells, with only minor uptake in the PC3 cells. In a dual-tumour xenograft mouse model, the nanomedicines showed high uptake in tumours in which the receptor was overexpressed, with only minimal non-specific accumulation in the low-expression tumours.

Conclusions

This work highlighted the importance of clearly defining the target of interest in next-generation nanomedicines, and suggests that dual-targeting in such nanomedicines may be a means to achieve greater efficacy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

DCM:

Dichloromethane

EGFR:

Epidermal growth factor receptor

EphA2:

EphrinA2

EPR:

Enhanced permeability and retention (effect)

HBP:

Hyperbranched polymer

HER2:

Human epidermal growth factor receptor 2

NMR:

Nuclear magnetic resonance

PAGE:

Polyacrylamide gel electrophoresis

PBS:

Phosphate buffered saline

PSMA:

Prostate-specific membrane antigen

scFv:

Single chain variable fragment (of antibody)

SEC-MALS:

Size exclusion chromatography – multiangle laser light scattering

THF:

Tetrahydrofuran

VEGF:

Vascular endothelial growth factor

References

  1. Ross JF, Chaudhuri PK, Ratnam M. Differential regulation of folate receptor isoforms in normal and malignant tissues in vivo and in established cell lines. Physiologic and clinical implications. Cancer. 1994;73(9):2432–43.

    Article  CAS  PubMed  Google Scholar 

  2. Parker N, Turk MJ, Westrick E, Lewis JD, Low PS, Leamon CP. Folate receptor expression in carcinomas and normal tissues determined by a quantitative radioligand binding assay. Anal Biochem. 2005;338(2):284–93.

    Article  CAS  PubMed  Google Scholar 

  3. Andre S, Kojima S, Yamazaki N, Fink C, Kaltner H, Kayser K, et al. Galectins-1 and −3 and their ligands in tumor biology. Non-uniform properties in cell-surface presentation and modulation of adhesion to matrix glycoproteins for various tumor cell lines, in biodistribution of free and liposome-bound galectins and in their expression by breast and colorectal carcinomas with/without metastatic propensity. J Cancer Res Clin Oncol. 1999;125(8–9):461–74.

    CAS  PubMed  Google Scholar 

  4. Wright GL, Haley C, Beckett ML, Schellhammer PF. Expression of prostate-specific membrane antigen in normal, benign, and malignant prostate tissues. Urol Oncol Semin Orig Investig. 1995;1(1):18–28.

    Article  Google Scholar 

  5. Zhong Y, Meng F, Deng C, Zhong Z. Ligand-directed active tumor-targeting polymeric nanoparticles for cancer chemotherapy. Biomacromolecules. 2014;15(6):1955–69.

    Article  CAS  PubMed  Google Scholar 

  6. Bazak R, Houri M, El Achy S, Kamel S, Refaat T. Cancer active targeting by nanoparticles: a comprehensive review of literature. J Cancer Res Clin Oncol. 2015;141(5):769–84.

    Article  CAS  PubMed  Google Scholar 

  7. Byrne JD, Betancourt T, Brannon-Peppas L. Active targeting schemes for nanoparticle systems in cancer therapeutics. Adv Drug Deliv Rev. 2008;60(15):1615–26.

    Article  CAS  PubMed  Google Scholar 

  8. Weitman SD, Lark RH, Coney LR, Fort DW, Frasca V, Zurawski Jr VR, et al. Distribution of the folate receptor GP38 in normal and malignant cell lines and tissues. Cancer Res. 1992;52(12):3396–401.

    CAS  PubMed  Google Scholar 

  9. Wang S, Low PS. Folate-mediated targeting of antineoplastic drugs, imaging agents, and nucleic acids to cancer cells. J Control Release Off J Control Release Soc. 1998;53(1–3):39–48.

    Article  CAS  Google Scholar 

  10. Scarano W, Duong HT, Lu H, De Souza PL, Stenzel MH. Folate conjugation to polymeric micelles via boronic acid ester to deliver platinum drugs to ovarian cancer cell lines. Biomacromolecules. 2013;14(4):962–75.

    Article  CAS  PubMed  Google Scholar 

  11. Li L, Yang Q, Zhou Z, Zhong J, Huang Y. Doxorubicin-loaded, charge reversible, folate modified HPMA copolymer conjugates for active cancer cell targeting. Biomaterials. 2014;35(19):5171–87.

    Article  CAS  PubMed  Google Scholar 

  12. Ciardiello F, Tortora G. Epidermal growth factor receptor (EGFR) as a target in cancer therapy: understanding the role of receptor expression and other molecular determinants that could influence the response to anti-EGFR drugs. Eur J Cancer. 2003;39(10):1348–54.

    Article  CAS  PubMed  Google Scholar 

  13. Weiner LM, Surana R, Wang S. Monoclonal antibodies: versatile platforms for cancer immunotherapy. Nat Rev Immunol. 2010;10(5):317–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gschwind A, Fischer OM, Ullrich A. The discovery of receptor tyrosine kinases: targets for cancer therapy. Nat Rev Cancer. 2004;4(5):361–70.

    Article  CAS  PubMed  Google Scholar 

  15. Ferrara N, Gerber H-P, LeCouter J. The biology of VEGF and its receptors. Nat Med. 2003;9(6):669–76.

    Article  CAS  PubMed  Google Scholar 

  16. Brannon-Peppas L, Blanchette JO. Nanoparticle and targeted systems for cancer therapy. Adv Drug Deliv Rev. 2012;64 Suppl 206–212.

  17. Walker-Daniels J, Coffman K, Azimi M, Rhim JS, Bostwick DG, Snyder P, et al. Overexpression of the EphA2 tyrosine kinase in prostate cancer. Prostate. 1999;41(4):275–80.

    Article  CAS  PubMed  Google Scholar 

  18. Israeli RS, Powell CT, Corr JG, Fair WR, Heston WD. Expression of the prostate-specific membrane antigen. Cancer Res. 1994;54(7):1807–11.

    CAS  PubMed  Google Scholar 

  19. Su SL, Huang IP, Fair WR, Powell CT, Heston WD. Alternatively spliced variants of prostate-specific membrane antigen RNA: ratio of expression as a potential measurement of progression. Cancer Res. 1995;55(7):1441–3.

    CAS  PubMed  Google Scholar 

  20. Fuchs AV, Tse BWC, Pearce AK, Yeh M-C, Fletcher NL, Huang SS, et al. Evaluation of polymeric nanomedicines targeted to PSMA: effect of ligand on targeting efficiency. Biomacromolecules. 2015;16(10):3235–47.

    Article  CAS  PubMed  Google Scholar 

  21. Ghosh A, Wang X, Klein E, Heston WD. Novel role of prostate-specific membrane antigen in suppressing prostate cancer invasiveness. Cancer Res. 2005;65(3):727–31.

    CAS  PubMed  Google Scholar 

  22. Pulukuri SM, Gondi CS, Lakka SS, Jutla A, Estes N, Gujrati M, et al. RNA interference-directed knockdown of urokinase plasminogen activator and urokinase plasminogen activator receptor inhibits prostate cancer cell invasion, survival, and tumorigenicity in vivo. J Biol Chem. 2005;280(43):36529–40.

    Article  CAS  PubMed  Google Scholar 

  23. Kullander K, Klein R. Mechanisms and functions of Eph and ephrin signalling. Nat Rev Mol Cell Biol. 2002;3(7):475–86.

    Article  CAS  PubMed  Google Scholar 

  24. Pasquale EB. Eph-Ephrin bidirectional signaling in physiology and disease. Cell. 2008;133(1):38–52.

    Article  CAS  PubMed  Google Scholar 

  25. Lindberg RA, Hunter T. cDNA cloning and characterization of eck, an epithelial cell receptor protein-tyrosine kinase in the eph/elk family of protein kinases. Mol Cell Biol. 1990;10(12):6316–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Riethmuller G, Schneider-Gadicke E, Johnson JP. Monoclonal antibodies in cancer therapy. Curr Opin Immunol. 1993;5(5):732–9.

    Article  CAS  PubMed  Google Scholar 

  27. Ogawa K, Pasqualini R, Lindberg RA, Kain R, Freeman AL, Pasquale EB. The ephrin-A1 ligand and its receptor, EphA2, are expressed during tumor neovascularization. Oncogene. 2000;19(52):6043–52.

    Article  CAS  PubMed  Google Scholar 

  28. Zelinski DP, Zantek ND, Stewart JC, Irizarry AR, Kinch MS. EphA2 overexpression causes tumorigenesis of mammary epithelial cells. Cancer Res. 2001;61(5):2301–6.

    CAS  PubMed  Google Scholar 

  29. Chen P, Huang YAN, Zhang BO, Wang Q, Bai P. EphA2 enhances the proliferation and invasion ability of LNCaP prostate cancer cells. Oncol Lett. 2014;8(1):41–6.

    PubMed  PubMed Central  Google Scholar 

  30. Miao B, Ji Z, Tan L, Taylor M, Zhang J, Choi HG, et al. EPHA2 is a mediator of vemurafenib resistance and a novel therapeutic target in melanoma. Cancer Discov. 2015;5(3):274–87.

    Article  CAS  PubMed  Google Scholar 

  31. Brannan JM, Sen B, Saigal B, Prudkin L, Behrens C, Solis L, et al. EphA2 in the early pathogenesis and progression of non–small cell lung cancer. Cancer Prev Res. 2009;2(12):1039–49.

    Article  CAS  Google Scholar 

  32. Brantley-Sieders DM. Clinical relevance of Ephs and ephrins in cancer: lessons from breast, colorectal, and lung cancer profiling. Semin Cell Dev Biol. 2012;23(1):102–8.

    Article  CAS  PubMed  Google Scholar 

  33. Murai KK, Pasquale EB. ‘Eph’ective signaling: forward, reverse and crosstalk. J Cell Sci. 2003;116(Pt 14):2823–32.

    Article  CAS  PubMed  Google Scholar 

  34. Taddei ML, Parri M, Angelucci A, Bianchini F, Marconi C, Giannoni E, et al. EphA2 induces metastatic growth regulating amoeboid motility and clonogenic potential in prostate carcinoma cells. Mol Cancer Res MCR. 2011;9(2):149–60.

    Article  CAS  PubMed  Google Scholar 

  35. Landen Jr CN, Lu C, Han LY, Coffman KT, Bruckheimer E, Halder J, et al. Efficacy and antivascular effects of EphA2 reduction with an agonistic antibody in ovarian cancer. J Natl Cancer Inst. 2006;98(21):1558–70.

    Article  CAS  PubMed  Google Scholar 

  36. Carles-Kinch K, Kilpatrick KE, Stewart JC, Kinch MS. Antibody targeting of the EphA2 tyrosine kinase inhibits malignant cell behavior. Cancer Res. 2002;62(10):2840–7.

    CAS  PubMed  Google Scholar 

  37. Wu B, Wang S, De SK, Barile E, Quinn BA, Zharkikh I, et al. Design and characterization of novel EphA2 agonists for targeted delivery of chemotherapy to cancer cells. Chem Biol. 2015;22(7):876–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Noberini R, Koolpe M, Peddibhotla S, Dahl R, Su Y, Cosford NDP, et al. Small molecules can selectively inhibit Ephrin binding to the EphA4 and EphA2 receptors. J Biol Chem. 2008;283(43):29461–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hammond SA, Lutterbuese R, Roff S, Lutterbuese P, Schlereth B, Bruckheimer E, et al. Selective targeting and potent control of tumor growth using an EphA2/CD3-Bispecific single-chain antibody construct. Cancer Res. 2007;67(8):3927–35.

    Article  CAS  PubMed  Google Scholar 

  40. Presta LG. Engineering of therapeutic antibodies to minimize immunogenicity and optimize function. Adv Drug Deliv Rev. 2006;58(5–6):640–56.

    Article  CAS  PubMed  Google Scholar 

  41. Marcucci F, Lefoulon F. Active targeting with particulate drug carriers in tumor therapy: fundamentals and recent progress. Drug Discov Today. 2004;9(5):219–28.

    Article  CAS  PubMed  Google Scholar 

  42. Pearce AK, Rolfe BE, Russell PJ, Tse BWC, Whittaker AK, Fuchs AV, et al. Development of a polymer theranostic for prostate cancer. Polym Chem. 2014;5(24):6932–42.

    Article  CAS  Google Scholar 

  43. Coles DJ, Rolfe BE, Boase NRB, Veedu RN, Thurecht KJ. Aptamer-targeted hyperbranched polymers: towards greater specificity for tumours in vivo. Chem Commun. 2013;49(37):3836–8.

    Article  CAS  Google Scholar 

  44. Liu B, Kazlauciunas A, Guthrie JT, Perrier S. One-pot hyperbranched polymer synthesis mediated by reversible addition fragmentation chain transfer (RAFT) polymerization. Macromolecules. 2005;38(6):2131–6.

    Article  CAS  Google Scholar 

  45. Frechet JMJ, Henmi M, Gitsov I, Aoshima S, Leduc MR, Grubbs RB. Self-condensing vinyl polymerization: an approach to dendritic materials. Science. 1995;269(5227):1080–3.

    Article  CAS  PubMed  Google Scholar 

  46. Taddei ML, Parri M, Angelucci A, Onnis B, Bianchini F, Giannoni E, et al. Kinase-dependent and -independent roles of EphA2 in the regulation of prostate cancer invasion and metastasis. Am J Pathol. 2009;174(4):1492–503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Chang SS, Reuter VE, Heston WDW, Bander NH, Grauer LS, Gaudin PB. Five different anti-prostate-specific membrane antigen (PSMA) antibodies confirm PSMA expression in tumor-associated neovasculature. Cancer Res. 1999;59(13):3192–8.

    CAS  PubMed  Google Scholar 

  48. Tan JH, McMillan NAJ, Payne E, Alexander C, Heath F, Whittaker AK, et al. Hyperbranched polymers as delivery vectors for oligonucleotides. J Polym Sci A Polym Chem. 2012;50(13):2585–95.

    Article  CAS  Google Scholar 

  49. Rolfe BE, Blakey I, Squires O, Peng H, Boase NRB, Alexander C, et al. Multimodal polymer nanoparticles with combined 19 F magnetic resonance and optical detection for tunable, targeted, multimodal imaging in vivo. J Am Chem Soc. 2014;136(6):2413–9.

    Article  CAS  PubMed  Google Scholar 

  50. Fang J, Nakamura H, Maeda H. The EPR effect: unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv Drug Deliv Rev. 2011;63(3):136–51.

    Article  CAS  PubMed  Google Scholar 

  51. Frangioni JV. In vivo near-infrared fluorescence imaging. Curr Opin Chem Biol. 2003;7(5):626–34.

    Article  CAS  PubMed  Google Scholar 

  52. Hansch A, Sauner D, Hilger I, Bottcher J, Malich A, Frey O, et al. Autofluorescence spectroscopy in whole organs with a mobile detector system. Acad Radiol. 2004;11(11):1229–36.

    Article  PubMed  Google Scholar 

  53. Boase NRB, Blakey I, Rolfe BE, Mardon K, Thurecht KJ. Synthesis of a multimodal molecular imaging probe based on a hyperbranched polymer architecture. Polym Chem. 2014;5(15):4450–8.

    Article  CAS  Google Scholar 

  54. Bartlett DW, Su H, Hildebrandt IJ, Weber WA, Davis ME. Impact of tumor-specific targeting on the biodistribution and efficacy of siRNA nanoparticles measured by multimodality in vivo imaging. Proc Natl Acad Sci U S A. 2007;104(39):15549–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

The researchers would like to thank Dr Christopher Howard (Australian Institute for Bioengineering and Nanotechnology, Australia) for the LNCaP cells and EphA2 scFv used in this study. This work was performed in part at the Queensland node of the Australian National Fabrication Facility, a company established under the National Collaborative Research Infrastructure Strategy to provide nano- and micro-fabrication facilities for Australia’s researchers. We acknowledge funding from the National Health and Medical Research Council (APP1099321, KJT), the Australian Research Council (FT110100284 (KJT), DP140100951 (KJT)), and the Australian Commonwealth Government Australian Postgraduate Award (AKP). This research was conducted and funded by the ARC Centre of Excellence in Convergent Bio-Nano Science and Technology (CE140100036).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristofer J. Thurecht.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pearce, A.K., Fuchs, A.V., Fletcher, N.L. et al. Targeting Nanomedicines to Prostate Cancer: Evaluation of Specificity of Ligands to Two Different Receptors In Vivo . Pharm Res 33, 2388–2399 (2016). https://doi.org/10.1007/s11095-016-1945-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-016-1945-x

KEY WORDS

Navigation