Advertisement

Pharmaceutical Research

, Volume 33, Issue 10, pp 2337–2357 | Cite as

Graphene Quantum Dots for Theranostics and Bioimaging

  • Kathryn L. Schroeder
  • Renee V. Goreham
  • Thomas NannEmail author
Expert Review

Abstract

Since their advent in the early 1990s, nanomaterials hold promise to constitute improved technologies in the biomedical area. In particular, graphene quantum dots (GQDs) were conjectured to produce new or improve current methods used for bioimaging, drug delivery, and biomarker sensors for early detection of diseases. This review article critically compares and discusses current state-of-the-art use of GQDs in biology and health sciences. It shows the ability of GQDs to be easily functionalised for use as a targeted multimodal treatment and imaging platform. The in vitro and in vivo toxicity of GQDs are explored showing low toxicity for many types of GQDs.

KEY WORDS

bioimaging drug delivery graphene quantum dots toxicity 

Abbreviations

1O2

Singlet oxygen

3T3-L1

Adipocyte cells

3T3-L1

Adipocyte cells

A549

Human lung carcinoma cells

BSA

Bovine serum albumin

CD44

A type of receptor

Ce6

Chlorine e6

CFP-10

A tuberculosis antigen

CHO-K1

Chinese hamster ovary cells

CPCs

Cardiac progenitor cells

Cur

Curcumin

DAPI

4′,6-diamidino-2-phenylindole, a dye

DGO

Double-oxidised graphen oxide

DHR

Dihydrorohdamine, a redox sensitive dye

DNA

Deoxyribonucleic acid

DOX

Doxorubicin

DTT

Dithiothreitol

Em

Emission

EPR

Electron paramagnetic resonance

Ex

Excitation

FA

Folic acid

FRET

Forster/fluorescence resonance energy transfer

GBP

Gold binding protein

GO

Graphene oxide

GoQD

Oxidised graphene quantum dots

GQD

Graphene quantum dot

GSH

Glutathione

HA

Hyaluronic acid

HCT 116

Human colon adenocarcinoma cells

HEK293A

Human embryonic kidney cells

HeLa

Human cervical cancer cells

HepG2

Human liver carcinoma cells

HER2

Receptors on some breast cancer cells

hNSCs

Human neural stem cells

HOMO

Highest molecular orbital

IP

Intraperitoneal

IR

Infrared

IV

Intravenous

LDH

Lactase dehydrogenase

LI

Lidocaine

LUMO

Lowest molecular orbital

Mag-Plas

Magneto-plasmonic

MC3T3

Mouse osteoblastic cells

MCF-7

Human breast cancer cells

MDCK

Madin-Darby canine kidney epithelial cells

MG-63

Human osteosarcoma cells

MGC-803

Kidney cancer cells

MRI

Magnetic resonance imaging

MTT

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

Na2-ADPA

Disodium 9,10-anthracen-dipropionic acid

NGF

Nerve growth factor

N-GQDs

GQDs doped with nitrogen

NP

Nanoparticle

NSCs

Neurosphere cells

NW

Nanowire

PBS

Phosphate buffered saline

PC12

Neuroendocrine cells

PDT

Photodynamic therapy

PEG

Polyethylene glycol

PEI

Polyethylenimine

PL

Photoluminescence

PNF

Peptide nano fibre

PNFs

Peptide nanofibers

PPCs

Pancreas progenitor cells

PpIX

Protoporphyrin IX

PS

Photosensitiser

QD

Quantum dot

QY

Quantum yield

r1

Longitudinal relaxivity

r-GQDs

Reduced GQD

ROS

Reactive oxygen species

SERS

Surface-enhanced Raman scattering

SS

Disulfide

T47D

Human breast cancer cells

U251

Human glioma cells

References

  1. 1.
    Bacon M, Bradley SJ, Nann T. Graphene quantum dots. Part Part Syst Charact. 2014;31(4):415–28.CrossRefGoogle Scholar
  2. 2.
    Shen J, Zhu Y, Yang X, Li C. Graphene quantum dots:emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices. Chem Commun. 2012;48(31):3686–99.Google Scholar
  3. 3.
    Ha HD, Jang M-H, Liu F, Cho Y-H, Seo TS. Upconversion photoluminescent metal ion sensors via two photon absorption in graphene oxide quantum dots. Carbon. 2015;81:367–75.CrossRefGoogle Scholar
  4. 4.
    Dong A, Ye X, Chen J, Kang Y, Gordon T, Kikkawa JM, et al. A generalized ligand-exchange strategy enabling sequential surface functionalization of colloidal nanocrystals. J Am Chem Soc. 2012;133(4):998–1006.CrossRefGoogle Scholar
  5. 5.
    Dong Y, Shao J, Chen C, Li H, Wang R, Chi Y, et al. Blue luminescent graphene quantum dots and graphene oxide prepared by tuning the carbonization degree of citric acid. Carbon. 2012;50(12):4738–43.CrossRefGoogle Scholar
  6. 6.
    Geim AK, MacDonald AH. Graphene: exploring carbon flatland. Phys Today. 2007;60(8):35–41.CrossRefGoogle Scholar
  7. 7.
    Liu F, Jang M-H, Ha HD, Kim J-H, Cho Y-H, Seo TS. Facile synthetic method for pristine graphene quantum dots and graphene oxide quantum dots: origin of blue and green luminescence. Adv Mater. 2013;25(27):3657–62.CrossRefPubMedGoogle Scholar
  8. 8.
    Simpson CD, Brand JD, Berresheim AJ, Przybilla L, Räder HJ, Müllen K. Synthesis of a giant 222 carbon graphite sheet. Chem Eur J. 2002;8(6):1424–9.CrossRefPubMedGoogle Scholar
  9. 9.
    Wu J, Tomović Ž, Enkelmann V, Müllen K. From branched hydrocarbon propellers to C3-symmetric graphite disks. J Org Chem. 2004;69(16):5179–86.CrossRefPubMedGoogle Scholar
  10. 10.
    Tang L, Ji R, Cao X, Lin J, Jiang H, Li X, et al. Deep ultraviolet photoluminescence of water-soluble self-passivated graphene quantum dots. ACS Nano. 2012;6(6):5102–10.CrossRefPubMedGoogle Scholar
  11. 11.
    Liu R, Wu D, Feng X, Müllen K. Bottom-up fabrication of photoluminescent graphene quantum dots with uniform morphology. J Am Chem Soc. 2011;133(39):15221–3.CrossRefPubMedGoogle Scholar
  12. 12.
    Röding M, Bradley SJ, Nydén M, Nann T. Fluorescence lifetime analysis of graphene quantum dots. J Phys Chem C. 2014;118(51):30282–90.CrossRefGoogle Scholar
  13. 13.
    Sheng W, Korkusinski M, Güçlü AD, Zielinski M, Potasz P, Kadantsev ES, et al. Electronic and optical properties of semiconductor and graphene quantum dots. Front Phys. 2012;7(3):328–52.CrossRefGoogle Scholar
  14. 14.
    Ding H, Wei J-S, Xiong H-M. Nitrogen and sulfur co-doped carbon dots with strong blue luminescence. Nanoscale. 2014;6(22):13817–23.CrossRefPubMedGoogle Scholar
  15. 15.
    Jiang F, Chen D, Li R, Wang Y, Zhang G, Li S, et al. Eco-friendly synthesis of size-controllable amine-functionalized graphene quantum dots with antimycoplasma properties. Nanoscale. 2013;5(3):1137.CrossRefPubMedGoogle Scholar
  16. 16.
    Li Y, Zhao Y, Cheng H, Hu Y, Shi G, Dai L, et al. Nitrogen-doped graphene quantum dots with oxygen-rich functional groups. J Am Chem Soc. 2012;134(1):15–8.CrossRefPubMedGoogle Scholar
  17. 17.
    Abdullah-Al-Nahain, Lee J-E, In I, Lee H, Lee KD, Jeong JH, et al. Target delivery and cell imaging using hyaluronic acid-functionalized graphene quantum dots. Mol Pharm. 2013;10(10):3736–44.CrossRefPubMedGoogle Scholar
  18. 18.
    Huang C-L, Huang C-C, Mai F-D, Yen C-L, Tzing S-H, Hsieh H-T, et al. Application of paramagnetic graphene quantum dots as a platform for simultaneous dual-modality bioimaging and tumor-targeted drug delivery. J Mater Chem B. 2015;3(4):651–64.CrossRefGoogle Scholar
  19. 19.
    Yuan X, Liu Z, Guo Z, Ji Y, Jin M, Wang X. Cellular distribution and cytotoxicity of graphene quantum dots with different functional groups. Nanoscale Res Lett. 2014;9(1):1–9.CrossRefGoogle Scholar
  20. 20.
    Zheng XT, Than A, Ananthanaraya A, Kim D-H, Chen P. Graphene quantum dots as universal fluorophores and their use in revealing regulated trafficking of insulin receptors in adipocytes. ACS Nano. 2013;7(7):6278–86.CrossRefPubMedGoogle Scholar
  21. 21.
    Chandra A, Deshpande S, Shinde DB, Pillai VK, Singh N. Mitigating the cytotoxicity of graphene quantum dots and enhancing their applications in bioimaging and drug delivery. ACS Macro Lett. 2014;3(10):1064–8.CrossRefGoogle Scholar
  22. 22.
    Nigam P, Waghmode S, Louis M, Wangnoo S, Chavan P, Sarkar D. Graphene quantum dots conjugated albumin nanoparticles for targeted drug delivery and imaging of pancreatic cancer. J Mater Chem B. 2014;2(21):3190–5.CrossRefGoogle Scholar
  23. 23.
    Wang X, Sun X, Lao J, He H, Cheng T, Wang M, et al. Multifunctional graphene quantum dots for simultaneous targeted cellular imaging and drug delivery. Colloids Surf B: Biointerfaces. 2014;122:638–44.CrossRefPubMedGoogle Scholar
  24. 24.
    Justin R, Román S, Chen D, Tao K, Geng X, Grant RT, et al. Biodegradable and conductive chitosan–graphene quantum dot nanocomposite microneedles for delivery of both small and large molecular weight therapeutics. RSC Adv. 2015;5(64):51934–46.CrossRefGoogle Scholar
  25. 25.
    Some S, Gwon A-R, Hwang E, Bahn G, Yoon Y, Kim Y, et al. Cancer therapy using ultrahigh hydrophobic drug-loaded graphene derivatives. Sci Rep. 2014;4:6314.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Wang C, Wu C, Zhou X, Han T, Xin X, Wu J, et al. Enhancing cell nucleus accumulation and DNA cleavage activity of anti-cancer drug via graphene quantum dots. Sci Rep. 2013;3:2852.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Zheng XT, He HL, Li CM. Multifunctional graphene quantum dots-conjugated titanate nanoflowers for fluorescence-trackable targeted drug delivery. RSC Adv. 2013;3(47):24853–7.CrossRefGoogle Scholar
  28. 28.
    Shao T, Wang G, An X, Zhuo S, Xia Y, Zhu C. A reformative oxidation strategy using high concentration nitric acid for enhancing the emission performance of graphene quantum dots. RSC Adv. 2014;4(89):47977–81.CrossRefGoogle Scholar
  29. 29.
    Su Z, Shen H, Wang H, Wang J, Li J, Nienhaus GU, et al. Motif-designed peptide nanofibers decorated with graphene quantum dots for simultaneous targeting and imaging of tumor cells. Adv Funct Mater. 2015;25(34):5472–8.CrossRefGoogle Scholar
  30. 30.
    Elliott WH, Elliott DC. Biochemistry and molecular biology. 4th ed. Oxford University Press; 2009. 568 p.Google Scholar
  31. 31.
    Zou F, Zhou H, Tan TV, Kim J, Koh K, Lee J. Dual-mode SERS-fluorescence immunoassay using graphene quantum dot labeling on one-dimensional aligned magnetoplasmonic nanoparticles. ACS Appl Mater Interfaces. 2015;7(22):12168–75.CrossRefPubMedGoogle Scholar
  32. 32.
    Agudelo D, Bourassa P, Bérubé G, Tajmir-Riahi H-A. Intercalation of antitumor drug doxorubicin and its analogue by DNA duplex: structural features and biological implications. Int J Biol Macromol. 2014;66:144–50.CrossRefPubMedGoogle Scholar
  33. 33.
    Li Y, Wu Z, Du D, Dong H, Shi D, Li Y. A graphene quantum dot (GQD) nanosystem with redox-triggered cleavable PEG shell facilitating selective activation of the photosensitiser for photodynamic therapy. RSC Adv. 2016;6(8):6516–22.CrossRefGoogle Scholar
  34. 34.
    Zhu S, Zhang J, Liu X, Li B, Wang X, Tang S, et al. Graphene quantum dots with controllable surface oxidation, tunable fluorescence and up-conversion emission. RSC Adv. 2012;2(7):2717–20.CrossRefGoogle Scholar
  35. 35.
    Liu Q, Guo B, Rao Z, Zhang B, Gong JR. Strong two-photon-induced fluorescence from photostable, biocompatible nitrogen-doped graphene quantum dots for cellular and deep-tissue imaging. Nano Lett. 2013;13(6):2436–41.CrossRefPubMedGoogle Scholar
  36. 36.
    Peng J, Gao W, Gupta BK, Liu Z, Romero-Aburto R, Ge L, et al. Graphene quantum dots derived from carbon fibers. Nano Lett. 2012;12(2):844–9.CrossRefPubMedGoogle Scholar
  37. 37.
    Jiang D, Chen Y, Li N, Li W, Wang Z, Zhu J, et al. Synthesis of luminescent graphene quantum dots with high quantum yield and their toxicity study. PLoS One. 2015; 10(12).Google Scholar
  38. 38.
    Nurunnabi M, Khatun Z, Huh KM, Park SY, Lee DY, Cho KJ, et al. In vivo Biodistribution and toxicology of carboxylated graphene quantum dots. ACS Nano. 2013;7(8):6858–67.CrossRefPubMedGoogle Scholar
  39. 39.
    Liu Y, Gao B, Qiao Z, Hu Y, Zheng W, Zhang L, et al. Gram-scale synthesis of graphene quantum dots from single carbon atoms growth via energetic material deflagration. Chem Mater. 2015;27(12):4319–27.CrossRefGoogle Scholar
  40. 40.
    Zhu C, Yang S, Wang G, Mo R, He P, Sun J, et al. A new mild, clean and highly efficient method for the preparation of graphene quantum dots without by-products. J Mater Chem B. 2015;3(34):6871–6.CrossRefGoogle Scholar
  41. 41.
    Zhu S, Zhang J, Qiao C, Tang S, Li Y, Yuan W, et al. Strongly green-photoluminescent graphene quantum dots for bioimaging applications. Chem Commun. 2011;47(24):6858–60.CrossRefGoogle Scholar
  42. 42.
    Zhu S, Zhang J, Tang S, Qiao C, Wang L, Wang H, et al. Surface chemistry routes to modulate the photoluminescence of graphene quantum dots: from fluorescence mechanism to up-conversion bioimaging applications. Adv Funct Mater. 2012;22(22):4732–40.CrossRefGoogle Scholar
  43. 43.
    Sk MA, Ananthanarayanan A, Huang L, Lim KH, Chen P. Revealing the tunable photoluminescence properties of graphene quantum dots. J Mater Chem C. 2014;2(34):6954.CrossRefGoogle Scholar
  44. 44.
    Zhang M, Bai L, Shang W, Xie W, Ma H, Fu Y, et al. Facile synthesis of water-soluble, highly fluorescent graphene quantum dots as a robust biological label for stem cells. J Mater Chem. 2012;22(15):7461–7.CrossRefGoogle Scholar
  45. 45.
    Ge J, Lan M, Zhou B, Liu W, Guo L, Wang H, et al. A graphene quantum dot photodynamic therapy agent with high singlet oxygen generation. Nat Commun. 2014;5:4596.PubMedPubMedCentralGoogle Scholar
  46. 46.
    Nurunnabi M, Khatun Z, Reeck GR, Lee DY, Lee Y. Near infra-red photoluminescent graphene nanoparticles greatly expand their use in noninvasive biomedical imaging. Chem Commun. 2013;49(44):5079–81.CrossRefGoogle Scholar
  47. 47.
    Sun Y, Wang S, Li C, Luo P, Tao L, Wei Y, et al. Large scale preparation of graphene quantum dots from graphite with tunable fluorescence properties. Phys Chem Chem Phys. 2013;15(24):9907–13.CrossRefPubMedGoogle Scholar
  48. 48.
    Zhou L, Geng J, Liu B. Graphene quantum dots from polycyclic aromatic hydrocarbon for bioimaging and sensing of Fe3+ and hydrogen peroxide. Part Part Syst Charact. 2013;30(12):1086–92.CrossRefGoogle Scholar
  49. 49.
    Qin Y, Zhou Z-W, Pan S-T, He Z-X, Zhang X, Qiu J-X, et al. Graphene quantum dots induce apoptosis, autophagy, and inflammatory response via p38 mitogen-activated protein kinase and nuclear factor-κB mediated signaling pathways in activated THP-1 macrophages. Toxicology. 2015;327:62–76.CrossRefPubMedGoogle Scholar
  50. 50.
    Zhu S, Zhou N, Hao Z, Maharjan S, Zhao X, Song Y, et al. Photoluminescent graphene quantum dots for in vitro and in vivo bioimaging using long wavelength emission. RSC Adv. 2015;5(49):39399–403.CrossRefGoogle Scholar
  51. 51.
    Cao L, Wang X, Meziani MJ, Lu F, Wang H, Luo PG, et al. Carbon dots for multiphoton bioimaging. J Am Chem Soc. 2007;129(37):11318–9.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Kobayashi H, Ogawa M, Alford R, Choyke PL, Urano Y. New strategies for fluorescent probe design in medical diagnostic imaging. Chem Rev. 2010;110(5):2620–40.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Shang W, Zhang X, Zhang M, Fan Z, Sun Y, Han M, et al. The uptake mechanism and biocompatibility of graphene quantum dots with human neural stem cells. Nanoscale. 2014;6(11):5799–806.CrossRefPubMedGoogle Scholar
  54. 54.
    Wu C, Wang C, Han T, Zhou X, Guo S, Zhang J. Insight into the cellular internalization and cytotoxicity of graphene quantum dots. Adv Healthcare Mater. 2013;2(12):1613–9.CrossRefGoogle Scholar
  55. 55.
    Kakran M, Sahoo NG, Bao H, Pan Y, Li L. Functionalized graphene oxide as nanocarrier for loading and delivery of ellagic acid. Curr Med Chem. 2011;18(29):4503–12.CrossRefPubMedGoogle Scholar
  56. 56.
    Chong Y, Ma Y, Shen H, Tu X, Zhou X, Xu J, et al. The in vitro and in vivo toxicity of graphene quantum dots. Biomaterials. 2014;35(19):5041–8.CrossRefPubMedGoogle Scholar
  57. 57.
    Wang T, Zhu S, Jiang X. Toxicity mechanisms of graphene oxide and nitrogen-doped graphene quantum dots in RBCs revealed by surface-enhanced infrared absorption spectroscopy. Toxicol Res. 2015;4:885–94.CrossRefGoogle Scholar
  58. 58.
    Liu J-H, Yang S-T, Wang H, Chang Y, Cao A, Liu Y. Effect of size and dose on the biodistribution of graphene oxide in mice. Nanomedicine. 2012;7(12):1801–12.CrossRefPubMedGoogle Scholar
  59. 59.
    Duch MC, Budinger GS, Liang YT, Soberanes S, Urich D, Chiarella SE, et al. Minimizing oxidation and stable nanoscale dispersion improves the biocompatibility of graphene in the lung. Nano Lett. 2011;11(12):5201–7.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Haase A, Tentschert J, Jungnickel H, Graf P, Mantion A, Draude F, et al. Toxicity of silver nanoparticles in human macrophages: uptake, intracellular distribution and cellular responses. J Phys Conf Ser. 2011;304:12030.CrossRefGoogle Scholar
  61. 61.
    Wang A, Pu K, Dong B, Liu Y, Zhang L, Zhang Z, et al. Role of surface charge and oxidative stress in cytotoxicity and genotoxicity of graphene oxide towards human lung fibroblast cells: toxicity of graphene oxide to HLF cells. J Appl Toxicol. 2013;33(10):1156–64.CrossRefPubMedGoogle Scholar
  62. 62.
    Alarifi S, Ali D, Verma A, Almajhdi FN, Al-Qahtani AA. Single-walled carbon nanotubes induce cytotoxicity and DNA damage via reactive oxygen species in human hepatocarcinoma cells. In Vitro Cell Dev Biol Anim. 2014;50(8):714–22.CrossRefPubMedGoogle Scholar
  63. 63.
    Dworak N, Wnuk M, Zebrowski J, Bartosz G, Lewinska A. Genotoxic and mutagenic activity of diamond nanoparticles in human peripheral lymphocytes in vitro. Carbon. 2014;68:763–76.CrossRefGoogle Scholar
  64. 64.
    Wang D, Zhu L, Chen J-F, Dai L. Can graphene quantum dots cause DNA damage in cells? Nanoscale. 2015;7(21):9894–901.CrossRefPubMedGoogle Scholar
  65. 65.
    Zhao J, Chen G, Zhu L, Li G. Graphene quantum dots-based platform for the fabrication of electrochemical biosensors. Electrochem Commun. 2011;13(1):31–3.CrossRefGoogle Scholar
  66. 66.
    Zhang Y, Wu C, Zhou X, Wu X, Yang Y, Wu H, et al. Graphene quantum dots/gold electrode and its application in living cell H2O2 detection. Nanoscale. 2013;5(5):1816–9.CrossRefPubMedGoogle Scholar
  67. 67.
    Sun H, Gao N, Dong K, Ren J, Qu X. Graphene quantum dots-band-aids used for wound disinfection. ACS Nano. 2014;8(6):6202–10.CrossRefPubMedGoogle Scholar
  68. 68.
    Markovic ZM, Ristic BZ, Arsikin KM, Klisic DG, Harhaji-Trajkovic LM, Todorovic-Markovic BM, et al. Graphene quantum dots as autophagy-inducing photodynamic agents. Biomaterials. 2012;33(29):7084–92.CrossRefPubMedGoogle Scholar
  69. 69.
    Brown SB, Brown EA, Walker I. The present and future role of photodynamic therapy in cancer treatment. Lancet Oncol. 2004;5(8):497–508.CrossRefPubMedGoogle Scholar
  70. 70.
    Leatherdale CA, Woo W-K, Mikulec FV, Bawendi MG. On the absorption cross section of CdSe nanocrystal quantum dots. J Phys Chem B. 2002;106(31):7619–22.CrossRefGoogle Scholar
  71. 71.
    Nann T. Nanoparticles in photodynamic therapy. Nano Biomed Eng. 2011;3(2):137–43.CrossRefGoogle Scholar
  72. 72.
    Nurunnabi M, Parvez K, Nafiujjaman M, Revuri V, Khan HA, Feng X, et al. Bioapplication of graphene oxide derivatives: drug/gene delivery, imaging, polymeric modification, toxicology, therapeutics and challenges. RSC Adv. 2015;5(52):42141–61.CrossRefGoogle Scholar
  73. 73.
    Charron G, Stuchinskaya T, Edwards DR, Russell DA, Nann T. Insights into the mechanism of quantum dot-sensitized singlet oxygen production for photodynamic therapy. J Phys Chem C. 2012;116(16):9334–42.CrossRefGoogle Scholar
  74. 74.
    Samia ACS, Chen X, Burda C. Semiconductor quantum dots for photodynamic therapy. J Am Chem Soc. 2003;125(51):15736–7.CrossRefPubMedGoogle Scholar
  75. 75.
    Ma J, Chen J-Y, Idowu M, Nyokong T. Generation of singlet oxygen via the composites of water-soluble thiol-capped CdTe quantum dots sulfonated aluminum phthalocyanines. J Phys Chem B. 2008;112(15):4465–9.CrossRefPubMedGoogle Scholar
  76. 76.
    Bakalova R, Ohba H, Zhelev Z, Nagase T, Jose R, Ishikawa M, et al. Quantum dot anti-CD conjugates: are they potential photosensitizers or potentiators of classical photosensitizing agents in photodynamic therapy of cancer? Nano Lett. 2004;4(9):1567–73.CrossRefGoogle Scholar
  77. 77.
    Longmire M, Choyke PL, Kobayashi H. Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats. Nanomed. 2008;3(5):703–17.CrossRefGoogle Scholar
  78. 78.
    Ristic BZ, Milenkovic MM, Dakic IR, Todorovic-Markovic BM, Milosavljevic MS, Budimir MD, et al. Photodynamic antibacterial effect of graphene quantum dots. Biomaterials. 2014;35(15):4428–35.CrossRefPubMedGoogle Scholar
  79. 79.
    Jovanović SP, Syrgiannis Z, Marković ZM, Bonasera A, Kepić DP, Budimir MD, et al. Modification of structural and luminescence properties of graphene quantum dots by gamma irradiation and their application in a photodynamic therapy. ACS Appl Mater Interfaces. 2015;7(46):25865–74.CrossRefPubMedGoogle Scholar
  80. 80.
    Jovanović S, Marković Z, Budimir M, Spitalsky Z, Vidoeski B, Marković BT. Effects of low gamma irradiation dose on the photoluminescence properties of graphene quantum dots. Opt Quant Electron. 2016;48(4):1–7.Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Kathryn L. Schroeder
    • 1
  • Renee V. Goreham
    • 1
  • Thomas Nann
    • 1
    Email author
  1. 1.The MacDiarmid Institute for Advanced Materials & Nanotechnology, School of Chemical and Physical SciencesVictoria University of WellingtonWellingtonNew Zealand

Personalised recommendations