Skip to main content

Advertisement

Log in

Saquinavir Loaded Acetalated Dextran Microconfetti – a Long Acting Protease Inhibitor Injectable

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Since the adoption of highly active antiretroviral therapy, HIV disease progression has slowed across the world; however, patients are often required to take multiple medications daily of poorly bioavailable drugs via the oral route, leading to gastrointestinal irritation. Recently, long acting antiretroviral injectables that deliver drug for months at a time have moved into late phase clinical trials. Unfortunately, these solid phase crystal formulations have inherent drawbacks in potential dose dumping and a greater likelihood for burst release of drug compared to polymeric formulations.

Methods

Using electrospinning, acetalated dextran scaffolds containing the protease inhibitor saquinavir were created. Grinding techniques were then used to process these scaffolds into injectables which are termed saquinavir microconfetti. Microconfetti was analyzed for in vitro and in vivo release kinetics.

Results

Highly saquinavir loaded acetalated dextran electrospun fibers were able to be formed and processed into saquinavir microconfetti while other polymers such as poly lactic-co-glycolic acid and polycaprolactone were unable to do so. Saquinavir microconfetti release kinetics were able to be tuned via drug loading and polymer degradation rates. In vivo, a single subcutaneous injection of saquinavir microconfetti released drug for greater than a week with large tissue retention.

Conclusions

Microconfetti is a uniquely tunable long acting injectable that would reduce the formation of adherence related HIV resistance. Our findings suggest that the injectable microconfetti delivery system could be used for long acting controlled release of saquinavir and other hydrophobic small molecule drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

Ace-DEX:

Acetalated dextran

FDA:

Food and drug administration

GI tract:

Gastrointestinal tract

HAART:

Highly active antiretroviral therapy

HIV:

Human immunodeficiency virus

MTB:

Mycobacterium tuberculosis

PCL:

Polycaprolactone

Pgp:

P-glycoprotein

PIs:

Protease inhibitors

PLGA:

Poly lactic-co-glycolic acid

RTV:

Ritonavir

SQV:

Saquinavir

SQV-MC:

Saquinavir microconfetti

WHO:

World health organization

References

  1. Organization WH. HIV/AIDS. Available from: http://www.who.int/hiv/en/.

  2. Aids.gov. HIV Basics. Available from: https://www.aids.gov/.

  3. Pauwels R. Aspects of successful drug discovery and development. Antivir Res. 2006;71(2–3):77–89.

    Article  CAS  PubMed  Google Scholar 

  4. Ledergerber B, Egger M, Erard V, Weber R, Hirschel B, Furrer H, et al. AIDS-related opportunistic illnesses occurring after initiation of potent antiretroviral therapy: the Swiss HIV Cohort Study. JAMA. 1999;282(23):2220–6.

    Article  CAS  PubMed  Google Scholar 

  5. Gardner EM, Burman WJ, Steiner JF, Anderson PL, Bangsberg DR. Antiretroviral medication adherence and the development of class-specific antiretroviral resistance. AIDS. 2009;23(9):1035–46.

    Article  PubMed  PubMed Central  Google Scholar 

  6. von Hentig N, Nisius G, Lennemann T, Khaykin P, Stephan C, Babacan E, et al. Pharmacokinetics, safety and efficacy of saquinavir/ ritonavir 1,000/100 mg twice daily as HIV type-1 therapy and transmission prophylaxis in pregnancy. Antivir Ther. 2008;13(8):1039–46.

    Google Scholar 

  7. Clavel F, Hance AJ. HIV drug resistance. N Engl J Med. 2004;350(10):1023–35.

    Article  CAS  PubMed  Google Scholar 

  8. Prevention CfDCa. Initiation of and adherence to treatment as prevention 2013.

  9. Ananworanich J, Hirschel B, Sirivichayakul S, Ubolyam S, Jupimai T, Prasithsirikul W, et al. Absence of resistance mutations in antiretroviral-naive patients treated with ritonavir-boosted saquinavir. Antivir Ther. 2006;11(5):631–5.

    CAS  PubMed  Google Scholar 

  10. Dickinson L, Boffito M, Khoo SH, Schutz M, Aarons LJ, Pozniak AL, et al. Pharmacokinetic analysis to assess forgiveness of boosted saquinavir regimens for missed or late dosing. J Antimicrob Chemother. 2008;62(1):161–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kemp DE, Canan F, Goldstein BI, McIntyre RS. Long-acting risperidone: a review of its role in the treatment of bipolar disorder. Adv Ther. 2009;26(6):588–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Draper BH, Morroni C, Hoffman M, Smit J, Beksinska M, Hapgood J, et al. Depot medroxyprogesterone versus norethisterone oenanthate for long-acting progestogenic contraception. Cochrane Database Syst Rev. 2006;3:CD005214.

    PubMed  Google Scholar 

  13. Nieschlag E, Buchter D, Von Eckardstein S, Abshagen K, Simoni M, Behre HM. Repeated intramuscular injections of testosterone undecanoate for substitution therapy in hypogonadal men. Clin Endocrinol. 1999;51(6):757–63.

    Article  CAS  Google Scholar 

  14. McEvoy JP. Risks versus benefits of different types of long-acting injectable antipsychotics. J Clin Psychiatry. 2006;67(5):15–8.

    CAS  PubMed  Google Scholar 

  15. Elzi L, Marzolini C, Furrer H, Ledergerber B, Cavassini M, Hirschel B, et al. Treatment modification in human immunodeficiency virus-infected individuals starting combination antiretroviral therapy between 2005 and 2008. Arch Intern Med. 2010;170(1):57–65.

    Article  CAS  PubMed  Google Scholar 

  16. Info A. Guidelines for the use of antiretroviral agents in HIV-1-Infected Adults and Adolescents. In.; 2015.

  17. Robison LS, Westfall AO, Mugavero MJ, Kempf MC, Cole SR, Allison JJ, et al. Short-term discontinuation of HAART regimens more common in vulnerable patient populations. AIDS Res Hum Retrovir. 2008;24(11):1347–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Spreen WR, Margolis DA, Pottage Jr JC. Long-acting injectable antiretrovirals for HIV treatment and prevention. Curr Opin HIV AIDS. 2013;8(6):565–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Rabinow BE. Nanosuspensions in drug delivery. Nat Rev Drug Discov. 2004;3(9):785–96.

    Article  CAS  PubMed  Google Scholar 

  20. van’t Klooster G, Hoeben E, Borghys H, Looszova A, Bouche MP, van Velsen F, et al. Pharmacokinetics and disposition of rilpivirine (TMC278) nanosuspension as a long-acting injectable antiretroviral formulation. Antimicrob Agents Chemother. 2010;54(5):2042–50.

    Article  Google Scholar 

  21. Fung HW, Mikasa TJ, Vergara J, Sivananthan SJ, Guderian JA, Duthie MS, et al. Optimizing manufacturing and composition of a TLR4 nanosuspension: physicochemical stability and vaccine adjuvant activity. J Nanobiotechnol. 2013;11:43.

    Article  Google Scholar 

  22. Kanthamneni N, Sharma S, Meenach SA, Billet B, Zhao JC, Bachelder EM, et al. Enhanced stability of horseradish peroxidase encapsulated in acetalated dextran microparticles stored outside cold chain conditions. Int J Pharm. 2012;431(1–2):101–10.

    Article  CAS  PubMed  Google Scholar 

  23. Kauffman KJ, Do C, Sharma S, Gallovic MD, Bachelder EM, Ainslie KM. Synthesis and characterization of acetalated dextran polymer and microparticles with ethanol as a degradation product. ACS Appl Mater Interfaces. 2012;4(8):4149–55.

    Article  CAS  PubMed  Google Scholar 

  24. Bachelder EM, Beaudette TT, Broaders KE, Dashe J, Frechet JM. Acetal-derivatized dextran: an acid-responsive biodegradable material for therapeutic applications. J Am Chem Soc. 2008;130(32):10494–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Borteh HM, Gallovic MD, Sharma S, Peine KJ, Miao S, Brackman DJ, et al. Electrospun acetalated dextran scaffolds for temporal release of therapeutics. Langmuir. 2013;29(25):7957–65.

    Article  CAS  PubMed  Google Scholar 

  26. Khorshidi S, Solouk A, Mirzadeh H, Mazinani S, Lagaron JM, Sharifi S, et al. A review of key challenges of electrospun scaffolds for tissue-engineering applications. J Tissue Eng Regen Med. 2015.

  27. Passerini N, Craig DQ. An investigation into the effects of residual water on the glass transition temperature of polylactide microspheres using modulated temperature DSC. J Control Release: Off J Control Release Soc. 2001;73(1):111–5.

    Article  CAS  Google Scholar 

  28. Singh L, Kumar V, Ratner BD. Generation of porous microcellular 85/15 poly (DL-lactide-co-glycolide) foams for biomedical applications. Biomaterials. 2004;25(13):2611–7.

    Article  CAS  PubMed  Google Scholar 

  29. Jung BH, Rezk NL, Bridges AS, Corbett AH, Kashuba AD. Simultaneous determination of 17 antiretroviral drugs in human plasma for quantitative analysis with liquid chromatography-tandem mass spectrometry. Biomed Chromatogr: BMC. 2007;21(10):1095–104.

    Article  CAS  PubMed  Google Scholar 

  30. Horn T. Transmitted HIV drug resistance on the rise in U.S. AIDSMEDS. 2012.

  31. Jarvis WR, Jarvis AA, Chinn RY. National prevalence of methicillin-resistant Staphylococcus aureus in inpatients at United States health care facilities, 2010. Am J Infect Control. 2012;40(3):194–200.

    Article  PubMed  Google Scholar 

  32. Salamon H, Yamaguchi KD, Cirillo DM, Miotto P, Schito M, Posey J, et al. Integration of published information into a resistance-associated mutation database for Mycobacterium tuberculosis. J Infect Dis. 2015;211(2):S50–57.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Md. Fazley Elahi* WL, Guoping G, Khan F. Core-shell fibers for biomedical applications-a review. Bioeng Biomed Sci. 2013;3(1).

  34. Duong AD, Sharma S, Peine KJ, Gupta G, Satoskar AR, Bachelder EM, et al. Electrospray encapsulation of toll-like receptor agonist resiquimod in polymer microparticles for the treatment of visceral leishmaniasis. Mol Pharm. 2013;10(3):1045–55.

    Article  CAS  PubMed  Google Scholar 

  35. Seif S, Franzen L, Windbergs M. Overcoming drug crystallization in electrospun fibers - Elucidating key parameters and developing strategies for drug delivery. Int J Pharm. 2015;478(1):390–7.

    Article  CAS  PubMed  Google Scholar 

  36. Serruys PW, Onuma Y, Dudek D, Smits PC, Koolen J, Chevalier B, et al. Evaluation of the second generation of a bioresorbable everolimus-eluting vascular scaffold for the treatment of de novo coronary artery stenosis: 12-month clinical and imaging outcomes. J Am Coll Cardiol. 2011;58(15):1578–88.

    Article  CAS  PubMed  Google Scholar 

  37. Yerragunta B, Jogala S, Chinnala KM, Aukunuru J. Development of a novel 3-month drug releasing risperidone microspheres. J Pharm Bioallied Sci. 2015;7(1):37–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Insert VP. Naltraxone for extended-release injectable suspension. 2015.

  39. Reach V. Keeping the cold chain cold. 2014.

  40. Perno CF, Newcomb FM, Davis DA, Aquaro S, Humphrey RW, Calio R, et al. Relative potency of protease inhibitors in monocytes/macrophages acutely and chronically infected with human immunodeficiency virus. J Infect Dis. 1998;178(2):413–22.

    Article  CAS  PubMed  Google Scholar 

  41. Davis DA, Read-Connole E, Pearson K, Fales HM, Newcomb FM, Moskovitz J, et al. Oxidative modifications of kynostatin-272, a potent human immunodeficiency virus type 1 protease inhibitor: potential mechanism for altered activity in monocytes/macrophages. Antimicrob Agents Chemother. 2002;46(2):402–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Mahajan SD, Roy I, Xu G, Yong KT, Ding H, Aalinkeel R, et al. Enhancing the delivery of anti retroviral drug “Saquinavir” across the blood brain barrier using nanoparticles. Curr HIV Res. 2010;8(5):396–404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Prakashan N. Mechanical operations: fundamental principles and applications; 2007.

  44. Champion JA, Mitragotri S. Role of target geometry in phagocytosis. Proc Natl Acad Sci U S A. 2006;103(13):4930–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hrkach J. Targeted polymeric nanotherapeutics. In frontiers of engineering: reports on leading-edge engineering from the 2008 Symposium. 2008.

  46. Fu Y, Kao WJ. Drug release kinetics and transport mechanisms of non-degradable and degradable polymeric delivery systems. Expert Opin Drug Deliv. 2010;7(4):429–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ford J, Khoo SH, Back DJ. The intracellular pharmacology of antiretroviral protease inhibitors. J Antimicrob Chemother. 2004;54(6):982–90.

    Article  CAS  PubMed  Google Scholar 

  48. Crow BB, Borneman AF, Hawkins DL, Smith GM, Nelson KD. Evaluation of in vitro drug release, pH change, and molecular weight degradation of poly(L-lactic acid) and poly(D, L-lactide-co-glycolide) fibers. Tissue Eng. 2005;11(7–8):1077–84.

    Article  CAS  PubMed  Google Scholar 

  49. Lin YS, Nguyen C, Mendoza JL, Escandon E, Fei D, Meng YG, et al. Preclinical pharmacokinetics, interspecies scaling, and tissue distribution of a humanized monoclonal antibody against vascular endothelial growth factor. J Pharmacol Exp Ther. 1999;288(1):371–8.

    CAS  PubMed  Google Scholar 

  50. Holladay JW, Dewey MJ, Michniak BB, Wiltshire H, Halberg DL, Weigl P, et al. Elevated alpha-1-acid glycoprotein reduces the volume of distribution and systemic clearance of saquinavir. Drug Metab Dispos: Biol Fate Chem. 2001;29(3):299–303.

    CAS  Google Scholar 

  51. AIDSinfo. Invirase Drug Database. Available from: https://aidsinfo.nih.gov/drugs/164/invirase/0/professional.

  52. Gautam N, Roy U, Balkundi S, Puligujja P, Guo D, Smith N, et al. Preclinical pharmacokinetics and tissue distribution of long-acting nanoformulated antiretroviral therapy. Antimicrob Agents Chemother. 2013;57(7):3110–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Meeus J, Scurr DJ, Amssoms K, Wuyts K, Annaert P, Davies MC, et al. In vivo evaluation of different formulation strategies for sustained release injectables of a poorly soluble HIV protease inhibitor. J Control Release: Off J Control Release Soc. 2015;199:1–9.

    Article  CAS  Google Scholar 

  54. Saksena NK, Wang B, Zhou L, Soedjono M, Ho YS, Conceicao V. HIV reservoirs in vivo and new strategies for possible eradication of HIV from the reservoir sites. HIV/AIDS. 2010;2:103–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Eagling VA, Wiltshire H, Whitcombe IW, Back DJ. CYP3A4-mediated hepatic metabolism of the HIV-1 protease inhibitor saquinavir in vitro. Xenobiotica; Fate Foreign Compounds Biol Syst. 2002;32(1):1–17.

    Article  CAS  Google Scholar 

  56. Diaz LK, Murphy RL, Phair JP, Variakojis D. The AIDS autopsy spleen: a comparison of the pre-anti-retroviral and highly active anti-retroviral therapy eras. Modern Pathol: Off J U S Can Acad Pathol Inc. 2002;15(4):406–12.

    Article  Google Scholar 

  57. Di Mascio M, Srinivasula S, Bhattacharjee A, Cheng L, Martiniova L, Herscovitch P, et al. Antiretroviral tissue kinetics: in vivo imaging using positron emission tomography. Antimicrob Agents Chemother. 2009;53(10):4086–95.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Daugas E, Rougier JP, Hill G. HAART-related nephropathies in HIV-infected patients. Kidney Int. 2005;67(2):393–403.

    Article  CAS  PubMed  Google Scholar 

  59. Weiner NJ, Goodman JW, Kimmel PL. The HIV-associated renal diseases: current insight into pathogenesis and treatment. Kidney Int. 2003;63(5):1618–31.

    Article  PubMed  Google Scholar 

  60. Tanji N, Ross MD, Tanji K, Bruggeman LA, Markowitz GS, Klotman PE, et al. Detection and localization of HIV-1 DNA in renal tissues by in situ polymerase chain reaction. Histol Histopathol. 2006;21(4):393–401.

    CAS  PubMed  Google Scholar 

  61. Kempf DJ, Marsh KC, Kumar G, Rodrigues AD, Denissen JF, McDonald E, et al. Pharmacokinetic enhancement of inhibitors of the human immunodeficiency virus protease by coadministration with ritonavir. Antimicrob Agents Chemother. 1997;41(3):654–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Plosker GL, Scott LJ. Saquinavir: a review of its use in boosted regimens for treating HIV infection. Drugs. 2003;63(12):1299–324.

    Article  CAS  PubMed  Google Scholar 

  63. Buss N, Snell P, Bock J, Hsu A, Jorga K. Saquinavir and ritonavir pharmacokinetics following combined ritonavir and saquinavir (soft gelatin capsules) administration. Br J Clin Pharmacol. 2001;52(3):255–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Shahani K, Swaminathan SK, Freeman D, Blum A, Ma L, Panyam J. Injectable sustained release microparticles of curcumin: a new concept for cancer chemoprevention. Cancer Res. 2010;70(11):4443–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments and Disclosures

We would like to acknowledge the Chapel Hill Analytical and Nanofabrication Laboratory (CHANL) and Campus Microscopy and Imaging Facility (CMIF) for allowing us access to use the imaging equipment used within this manuscript. Additionally, we would like to acknowledge the University of North Carolina at Chapel Hill Center for AIDS Research (P30 AI50410).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristy M. Ainslie.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplemental Figure 1

Scanning electron micrographs with scale bar indicating 5 μm for electrospun constructs from 71kDa acetalated dextran (Ace-DEX) encapsulating saquinavir (SQV) at a) 10, b) 20, c) 30, and d) 40% wt/wt, and 500kDa Ace-DEX encapsulating SQV at e) 50% wt/wt. (DOCX 715 kb)

Supplemental Figure 2

Scanning electron micrograph with scale bar indicating 10 μm of 71kDa acetalated dextran microconfetti (Ace-DEX-MC) using a mortar and pestle for processing. (DOCX 158 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Collier, M.A., Gallovic, M.D., Bachelder, E.M. et al. Saquinavir Loaded Acetalated Dextran Microconfetti – a Long Acting Protease Inhibitor Injectable. Pharm Res 33, 1998–2009 (2016). https://doi.org/10.1007/s11095-016-1936-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-016-1936-y

KEY WORDS

Navigation