Skip to main content

Advertisement

Log in

Controlling Release of Integral Lipid Nanoparticles Based on Osmotic Pump Technology

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

To achieve controlled release of integral nanoparticles by the osmotic pump strategy using nanostructured lipid carriers (NLCs) as model nanoparticles.

Methods

NLCs was prepared by a hot-homogenization method, transformed into powder by lyophilization, and formulated into osmotic pump tablets (OPTs). Release of integral NLCs was visualized by live imaging after labeling with a water-quenching fluorescent probe. Effects of formulation variables on in vitro release characteristics were evaluated by measuring the model drug fenofibrate. Pharmacokinetics were studied in beagle dogs using the core tablet and a micronized fenofibrate formulation as references.

Results

NLCs are released through the release orifices of the OPTs as integral nanoparticles. Near zero-order kinetics can be achieved by optimizing the influencing variables. After oral administration, decreased C max and steady drug levels for as long as over 24 h are observed. NLC-OPTs show an oral bioavailability of the model drug fenofibrate similar to that of the core tablets, which is about 1.75 folds that of a fast-release formulation.

Conclusion

Controlled release of integral NLCs is achieved by the osmotic pump strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ACQ:

Aggregation-caused quenching

ARE:

Average radiant efficiency

ATO5:

Precirol ATO® 5

FA:

Fenofibric acid

FNB:

Fenofibrate

GI:

Gastrointestinal

NLCs:

Nanostructured lipid carriers

OPTs:

Osmotic pump tablets

PDI:

Polydispersity index

PEG:

Polyethylene glycol

PEO:

Polyox WSR N80

PVP:

Polyvinylpyrrolidone

TEM:

Transmission electron microscopy

REFERENCES

  1. Ryan SM, Brayden DJ. Progress in the delivery of nanoparticle constructs: towards clinical translation. Curr Opin Pharmacol. 2014;18:120–8.

    Article  CAS  PubMed  Google Scholar 

  2. Zhou X, Porter AL, Robinson DK, Shim MS, Guo Y. Nano-enabled drug delivery: a research profile. Nanomedicine. 2014;10(5):889–96.

    CAS  PubMed  Google Scholar 

  3. Svenson S. What nanomedicine in the clinic right now really forms nanoparticles? Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2014;6(2):125–35.

    Article  CAS  PubMed  Google Scholar 

  4. Chow EK, Ho D. Cancer nanomedicine: from drug delivery to imaging. Sci Transl Med. 2013;5(216):16rv4.

    Article  Google Scholar 

  5. Yang Z, Kang SG, Zhou R. Nanomedicine: de novo design of nanodrugs. Nanoscale. 2014;6(2):663–77.

    Article  CAS  PubMed  Google Scholar 

  6. Etheridge ML, Campbell SA, Erdman AG, Haynes CL, Wolf SM, McCullough J. The big picture on nanomedicine: the state of investigational and approved nanomedicine products. Nanomedicine. 2013;9(1):1–14.

    CAS  PubMed  Google Scholar 

  7. He W, Lv Y, Zhao Y, Xu C, Jin Z, Qin C, et al. Core-shell structured gel-nanocarriers for sustained drug release and enhanced antitumor effect. Int J Pharm. 2015;484(1–2):163–71.

    Article  CAS  PubMed  Google Scholar 

  8. Shi J, Xu Y, Xu X, Zhu X, Pridgen E, Wu J, et al. Hybrid lipid-polymer nanoparticles for sustained siRNA delivery and gene silencing. Nanomedicine. 2014;10(5):897–900.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Dian L, Yang Z, Li F, Wang Z, Pan X, Peng X, et al. Cubic phase nanoparticles for sustained release of ibuprofen: formulation, characterization, and enhanced bioavailability study. Int J Nanomedicine. 2013;8:845–54.

    PubMed  PubMed Central  Google Scholar 

  10. Gaspar MM, Calado S, Pereira J, Ferronha H, Correia I, Castro H, et al. Targeted delivery of paromomycin in murine infectious diseases through association to nano lipid systems. Nanomedicine. 2015;11(7):1851–60.

    CAS  PubMed  Google Scholar 

  11. Fornaguera C, Dols-Perez A, Calderó G, García-Celma MJ, Camarasa J, Solans C. PLGA nanoparticles prepared by nano-emulsion templating using low-energy methods as efficient nanocarriers for drug delivery across the blood–brain barrier. J Control Release. 2015;211:134–43.

    Article  CAS  PubMed  Google Scholar 

  12. Kaplun V, Stepensky D. Efficient decoration of nanoparticles intended for intracellular drug targeting with targetingresidues, as revealed by a new indirect analytical approach. Mol Pharm. 2014;11(8):2906–14.

    Article  CAS  PubMed  Google Scholar 

  13. Li W, Zhang T, Ye Y, Zhang X, Wu B. Enhanced bioavailability of tripterine through lipid nanoparticles using broccoli-derived lipids as a carrier material. Int J Pharm. 2015;495(2):948–55.

    Article  CAS  PubMed  Google Scholar 

  14. He W, Yang K, Fan L, Lv Y, Jin Z, Zhu S, et al. Denatured globular protein and bile salt-coated nanoparticles for poorly water-soluble drugs: penetration across the intestinal epithelial barrier into the circulation system and enhanced oral bioavailability. Int J Pharm. 2015;495(1):9–18.

    Article  CAS  PubMed  Google Scholar 

  15. Liu Y, Salituro GM, Lee KJ, Bak A, Leung DH. Modulating drug release and enhancing the oral bioavailability of torcetrapib with solid lipid dispersion formulations. AAPS PharmSciTech. 2015;16(5):1091–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Shangguan M, Qi J, Lu Y, Wu W. Comparison of the oral bioavailability of silymarin-loaded lipid nanoparticles with their artificial lipolysate counterparts: implications on the contribution of integral structure. Int J Pharm. 2015;489(1–2):195–202.

    Article  CAS  PubMed  Google Scholar 

  17. Wang K, Qi J, Weng T, Tian Z, Lu Y, Hu K, et al. Enhancement of oral bioavailability of cyclosporine A: comparison of various nanoscale drug-delivery systems. Int J Nanomedicine. 2014;9:4991–9.

    PubMed  PubMed Central  Google Scholar 

  18. Rao S, Richter K, Nguyen TH, Boyd BJ, Porter CJ, Tan A, et al. Pluronic-functionalized silica-lipid hybrid microparticles: improving the oral delivery of poorly water-soluble weak bases. Mol Pharm. 2015;12(12):4424–33.

    Article  PubMed  Google Scholar 

  19. Fahmy UA, Ahmed OA, Hosny KM. Development and evaluation of avanafil self-nanoemulsifying drug delivery system with rapid onset of action and enhanced bioavailability. AAPS PharmSciTech. 2015;16(1):53–8.

    Article  CAS  PubMed  Google Scholar 

  20. Tran TH, Ramasamy T, Truong DH, Choi HG, Yong CS, Kim JO. Preparation and characterization of fenofibrate-loaded nanostructured lipid carriers for oralbioavailability enhancement. AAPS PharmSciTech. 2014;15(6):1509–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhang X, Chen G, Zhang T, Ma Z, Wu B. Effects of PEGylated lipid nanoparticles on the oral absorption of one BCS II drug: a mechanistic investigation. Int J Nanomedicine. 2014;9:5503–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Nguyen TH, Hanley T, Porter CJ, Boyd BJ. Nanostructured liquid crystalline particles provide long duration sustained-release effect for a poorly water soluble drug after oral administration. J Control Release. 2011;153(2):180–6.

    Article  CAS  PubMed  Google Scholar 

  23. Hu X, Zhang J, Yu Z, Xie Y, He H, Qi J, et al. Environment-responsive aza-BODIPY dyes quenching in water as potential probes to visualize the in vivo fate of lipid-based nanocarriers. Nanomedicine. 2015;11(8):1939–48.

    CAS  PubMed  Google Scholar 

  24. Hu X, Fan W, Yu Z, Lu Y, Qi J, Zhang J, et al. Evidence does not support intact absorption of solid lipid nanoparticles via oral delivery. Nanoscale. 2016;8(13):7024–35.

    Article  CAS  PubMed  Google Scholar 

  25. He W, Lu Y, Qi J, Chen L, Hu F, Wu W. Nanoemulsion-templated shell-crosslinked nanocapsules as drug delivery systems. Int J Pharm. 2013;445(1–2):69–78.

    Article  CAS  PubMed  Google Scholar 

  26. Parisi OI, Fiorillo M, Scrivano L, Sinicropi MS, Dolce V, Iacopetta D, et al. Sericin/ poly(ethylcyanoacrylate) nanospheres by interfacial polymerization for enhanced bioefficacy of fenofibrate: in vitro and in vivo studies. Biomacromolecules. 2015;16(10):3126–33.

    Article  CAS  PubMed  Google Scholar 

  27. Zhao WL, Carreira EM. Conformationally restricted aza-bodipy: a highly fluorescent, stable, near-infrared-absorbing dye. Angew Chem Int Ed Engl. 2005;44(11):1677–9.

    Article  CAS  PubMed  Google Scholar 

  28. Zhao WL, Carreira EM. Conformationally restricted aza-BODIPY: highly fluorescent, stable near-infrared absorbing dyes. Chemistry. 2006;12(27):7254–63.

    Article  CAS  PubMed  Google Scholar 

  29. Tian Z, Yi Y, Yuan H, Han J, Zhang X, Xie Y, et al. Solidification of nanostructured lipid carriers (NLCs) onto pellets by fluid-bed coating: preparation, in vitro characterization and bioavailability in dogs. Powder Technol. 2013;247:120–7.

    Article  CAS  Google Scholar 

  30. Balfour JA, McTavish D, Heel RC. Fenofibrate. A review of its pharmacodynamic and pharmacokinetic properties and therapeutic use in dyslipidaemia. Drugs. 1990;40(2):260–90.

    Article  CAS  PubMed  Google Scholar 

  31. Streel B, Hubert P, Ceccato A. Determination of fenofibric acid in human plasma using automated solid-phase extraction coupled to liquid chromatography. J Chromatogr B. 2000;742(2):391–400.

    Article  CAS  Google Scholar 

  32. Wang G, Guo J, Meng F, Song X, Zhong B, Zhao Y. Development of a sensitive liquid chromatography/tandem mass spectrometry method for the determination of fenofibric acid in rat plasma. Biomed Chromatogr. 2012;26(4):497–501.

    Article  PubMed  Google Scholar 

  33. Soares S, Fonte P, Costa A, Andrade J, Seabra V, Ferreira D, et al. Effect of freeze-drying, cryoprotectants and storage conditions on the stability of secondary structure of insulin-loaded solid lipid nanoparticles. Int J Pharm. 2013;456(2):370–81.

    Article  CAS  PubMed  Google Scholar 

  34. Wang Y, Kho K, Cheow WS, Hadinoto K. A comparison between spray drying and spray freeze drying for dry powder inhaler formulation of drug-loaded lipid-polymer hybrid nanoparticles. Int J Pharm. 2012;424(1–2):98–106.

    Article  CAS  PubMed  Google Scholar 

  35. Qi J, Lu Y, Wu W. Manufacturing solid dosage forms from bulk liquids using the fluid-bed drying technology. Curr Pharm Des. 2015;21(19):2668–76.

    Article  CAS  PubMed  Google Scholar 

  36. Hao B, Liu B. Thermal properties of PVP cryoprotectants with nanoparticles. J Nanotechnol Eng Med. 2011;2(2):021015.

    Article  Google Scholar 

  37. Theeuwes F. Elementary osmotic pump. J Pharm Sci. 1975;64(12):1987–91.

    Article  CAS  PubMed  Google Scholar 

  38. Verma RK, Mishra B, Garg S. Osmotically controlled oral drug delivery. Drug Dev Ind Pharm. 2000;26(7):695–708.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

This study was financially supported by Shanghai Commission of Science and Technology (14JC1490300), National Natural Science Foundation of China (81573363, 81001405), and National Key Basic Research Program (2015CB931800). The authors declare no potential conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianping Qi or Wei Wu.

Additional information

Zhiqiang Tian and Qin Yu contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, Z., Yu, Q., Xie, Y. et al. Controlling Release of Integral Lipid Nanoparticles Based on Osmotic Pump Technology. Pharm Res 33, 1988–1997 (2016). https://doi.org/10.1007/s11095-016-1935-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-016-1935-z

KEY WORDS

Navigation