Skip to main content
Log in

Hybrid Electrospun Polycaprolactone Mats Consisting of Nanofibers and Microbeads for Extended Release of Dexamethasone

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

We designed electrospun polycaprolactone mats consisting of nanofibers and microbeads for extended delivery of dexamethasone.

Methods

Thin flexible dexamethasone loaded polycaprolactone mats were prepared by electrospinning. The solvents, polymer loading, voltage and tip-to-collector distance were varied to explore the effects on microstructure of the mats. The microstructure was determined by scanning electron microscope imaging; drug transport was measured and modeled, and X-ray diffraction was used to gauge the crystallinity. Drug transport and X-ray diffraction studies were also conducted with a spin cast film for comparison.

Results

Thin mats, about 10 μm in thickness, were prepared by electrospinning. By controlling the voltage and tip-to-collector distance, we achieved a hybrid structure comprising of nanorods (nanofibers) and microbeads. The release profiles were fitted to the diffusion equation to obtain the diffusivities in the spheres and the rods. The diffusivity in the electrospun nanofibers was significantly lower compared to the casted films due to increased crystallinity, which was estimated from X-ray diffraction analysis. The electrospun hybrid mats sustained drug release for the desired duration of a month, in spite of the small thickness of about 10 μm. By comparison, a ten-fold thicker cast film sustains release for about the same duration suggesting about 100-fold decrease in diffusivity in the electrospun mats due to increased crystallinity.

Conclusions

Electrospun polycaprolactone mats are optimal for achieving long release durations due to increased crystallinity. Designing a hybrid structure by controlling the electrospinning parameters can be a useful approach to increase the release durations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

DCM:

Dichloromethane

DMF:

Dimethylformamide

FWHM:

Full width at half maximum

PCL:

Polycaprolactone

SEM:

Scanning electron microscope

XRD:

X-ray diffraction

References

  1. Wagoner MD. Chemical injuries of the eye: current concepts in pathophysiology and therapy. Surv Ophthalmol. 1997;41(4):275–13.

    Article  CAS  PubMed  Google Scholar 

  2. Gaudio P. A review of evidence guiding the use of corticosteroids in the treatment of intraocular inflammation. Ocul Immunol Inflamm. 2004;12(3):169–92.

    Article  CAS  PubMed  Google Scholar 

  3. Dexamethasone dosing information. Drugs.com.; Available from: http://www.drugs.com/mtm/dexamethasone-ophthalmic.html.

  4. Ashburn FS, Goldberg I, Kass MA. Compliance with ocular therapy. Surv Ophthalmol. 1980;24(4):237–48.

    Article  PubMed  Google Scholar 

  5. Schwartz B. The response of ocular pressure to corticosteroids. Int Ophthalmol Clin. 1966;6(4):929–89.

    Article  CAS  PubMed  Google Scholar 

  6. Urban Jr RC, Cotlier E. Corticosteroid-induced cataracts. Surv Ophthalmol. 1986;31(2):102–10.

    Article  CAS  PubMed  Google Scholar 

  7. Clark AF, Yorio T. Ophthalmic drug discovery. Nat Rev Drug Discov. 2003;2(6):448–59.

    Article  CAS  PubMed  Google Scholar 

  8. Hsu K-H, Gause S, Chauhan A. Review of ophthalmic drug delivery by contact lenses. J Drug Delivery Sci Technol. 2014;24(2):123–35.

    Article  CAS  Google Scholar 

  9. Saettone MF, Salminen L. Ocular inserts for topical delivery. Adv Drug Deliv Rev. 1995;16(1):95–106.

    Article  CAS  Google Scholar 

  10. Garduño-Anaya MA, De Toledo HC, Hinojosa-González R, Pane-Pianese C, Ríos-Castañeda LC. Dexamethasone inner ear perfusion by intratympanic injection in unilateral Meniere’s disease: a two-year prospective, placebo-controlled, double-blind, randomized trial. Otolaryngol Head Neck. 2005;133(2):285–94.

    Article  Google Scholar 

  11. Chang-Lin J-E, Attar M, Acheampong AA, Robinson MR, Whitcup SM, Kuppermann BD, et al. Pharmacokinetics and pharmacodynamics of a sustained-release dexamethasone intravitreal implant. Invest Ophthalmol Vis Sci. 2011;52(1):80–6.

    Article  CAS  PubMed  Google Scholar 

  12. Agarwal S, Wendorff JH, Greiner A. Use of electrospinning technique for biomedical applications. Polymer. 2008;49(26):5603–21.

    Article  CAS  Google Scholar 

  13. Neppalli R, Marega C, Marigo A, Bajgai MP, Kim HY, Causin V. Poly (ε-caprolactone) filled with electrospun nylon fibres: a model for a facile composite fabrication. Eur Polym J. 2010;46(5):968–76.

    Article  CAS  Google Scholar 

  14. Park EK, Kim SY, Lee SB, Lee YM. Folate-conjugated methoxy poly (ethylene glycol)/poly (ɛ-caprolactone) amphiphilic block copolymeric micelles for tumor-targeted drug delivery. J Control Release. 2005;109(1):158–68.

    Article  CAS  PubMed  Google Scholar 

  15. Rai B, Teoh S-H, Hutmacher D, Cao T, Ho K. Novel PCL-based honeycomb scaffolds as drug delivery systems for rhBMP-2. Biomaterials. 2005;26(17):3739–48.

    Article  CAS  PubMed  Google Scholar 

  16. Kim H-W, Knowles JC, Kim H-E. Hydroxyapatite/poly (ε-caprolactone) composite coatings on hydroxyapatite porous bone scaffold for drug delivery. Biomaterials. 2004;25(7):1279–87.

    Article  CAS  PubMed  Google Scholar 

  17. Rodoplu D, Mutlu M. Effects of electrospinning setup and process parameters on nanofiber morphology intended for the modification of quartz crystal microbalance surfaces. J Eng Fibers Fabr. 2012;2:118–23.

    Google Scholar 

  18. Koski A, Yim K, Shivkumar S. Effect of molecular weight on fibrous PVA produced by electrospinning. Mater Lett. 2004;58(3):493–7.

    Article  CAS  Google Scholar 

  19. Bhardwaj N, Kundu SC. Electrospinning: a fascinating fiber fabrication technique. Biotechnol Adv. 2010;28(3):325–47.

    Article  CAS  PubMed  Google Scholar 

  20. Huang Z-M, Zhang Y-Z, Kotaki M, Ramakrishna S. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol. 2003;63(15):2223–53.

    Article  CAS  Google Scholar 

  21. Ramakrishna S, Fujihara K, Teo W-E, Lim T-C, Ma Z. An introduction to electrospinning and nanofibers. New Jersey: World Scientific; 2005.

    Book  Google Scholar 

  22. Kim J, Chauhan A. Dexamethasone transport and ocular delivery from poly(hydroxyethyl methacrylate) gels. Int J Pharm. 2008;353(1–2):205–22.

    CAS  PubMed  Google Scholar 

  23. Lim C, Tan E, Ng S. Effects of crystalline morphology on the tensile properties of electrospun polymer nanofibers. Appl Phys Lett. 2008;92(14):141908.

    Article  Google Scholar 

  24. Wang X, Zhao H, Turng L-S, Li Q. Crystalline morphology of electrospun poly (ε-caprolactone)(PCL) nanofibers. Ind Eng Chem Res. 2013;52(13):4939–49.

    Article  CAS  Google Scholar 

  25. Fong H, Chun I, Reneker D. Beaded nanofibers formed during electrospinning. Polymer. 1999;40(16):4585–92.

    Article  CAS  Google Scholar 

  26. Eda G, Shivkumar S. Bead structure variations during electrospinning of polystyrene. J Mater Sci. 2006;41(17):5704–8.

    Article  CAS  Google Scholar 

  27. Eda G, Shivkumar S. Bead‐to‐fiber transition in electrospun polystyrene. J Appl Polym Sci. 2007;106(1):475–87.

    Article  CAS  Google Scholar 

  28. Thompson C, Chase G, Yarin A, Reneker D. Effects of parameters on nanofiber diameter determined from electrospinning model. Polymer. 2007;48(23):6913–22.

    Article  CAS  Google Scholar 

  29. Wannatong L, Sirivat A, Supaphol P. Effects of solvents on electrospun polymeric fibers: preliminary study on polystyrene. Polym Int. 2004;53(11):1851–9.

    Article  CAS  Google Scholar 

  30. Siepmann J, Siegel RA, Rathbone MJ. Diffusion controlled drug delivery systems. In: Fundamentals and applications of controlled release drug delivery. New York: Springer Science & Business Media; 2011. p. 127–51.

    Google Scholar 

  31. Sung H-J, Meredith C, Johnson C, Galis ZS. The effect of scaffold degradation rate on three-dimensional cell growth and angiogenesis. Biomaterials. 2004;25(26):5735–42.

    Article  CAS  PubMed  Google Scholar 

  32. Sun H, Mei L, Song C, Cui X, Wang P. The in vivo degradation, absorption and excretion of PCL-based implant. Biomaterials. 2006;27(9):1735–40.

    Article  CAS  PubMed  Google Scholar 

  33. Peng C-C, Chauhan A. Ion transport in silicone hydrogel contact lenses. J Membr Sci. 2012;399:95–105.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anuj Chauhan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hsu, KH., Fang, SP., Lin, CL. et al. Hybrid Electrospun Polycaprolactone Mats Consisting of Nanofibers and Microbeads for Extended Release of Dexamethasone. Pharm Res 33, 1509–1516 (2016). https://doi.org/10.1007/s11095-016-1894-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-016-1894-4

KEY WORDS

Navigation