Skip to main content

Advertisement

Log in

In Vitro Investigation of Influences of Chitosan Nanoparticles on Fluorescein Permeation into Alveolar Macrophages

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Pulmonary infection namely tuberculosis is characterized by alveolar macrophages harboring a large microbe population. The chitosan nanoparticles exhibit fast extracellular drug release in aqueous biological milieu. This study investigated the matrix effects of chitosan nanoparticles on extracellular drug diffusion into macrophages.

Methods

Oligo, low, medium and high molecular weight chitosan nanoparticles were prepared by nanospray drying technique. These nanoparticles were incubated with alveolar macrophages in vitro and had model drug sodium fluorescein added into the same cell culture. The diffusion characteristics of sodium fluorescein and nanoparticle behavior were investigated using fluorescence microscopy, scanning electron microscopy, differential scanning calorimetry and Fourier transform infrared spectroscopy techniques.

Results

The oligochitosan nanoparticles enabled macrophage membrane fluidization with the extent of sodium fluorescein entry into macrophages being directly governed by the nanoparticle loading. Using nanoparticles made of higher molecular weight chitosan, sodium fluorescein permeation into macrophages was delayed due to viscous chitosan diffusion barrier at membrane boundary.

Conclusion

Macrophage-chitosan nanoparticle interaction at membrane interface dictates drug migration into cellular domains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

Abs:

Absorbance

DD:

Deacetylation degree

DSC:

Differential scanning calorimetry

EDTA:

Ethylene diamine tetraacetate

FTIR:

Fourier transform infrared spectrometry

HCS:

High molecular weight chitosan

HIV:

Human immunodeficiency virus

KBr:

Potassium bromide

LCS:

Low molecular weight chitosan

MCS:

Medium molecular weight chitosan

MTT:

(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

OCS:

Oligochitosan

TIRF:

Total internal reflection fluorescence

References

  1. González-Juarrero M, O’Sullivan M. Optimization of inhaled therapies for tuberculosis: the role of macrophages and dendritic cells. Tuberculosis. 2011;91:86–92.

    Article  PubMed  Google Scholar 

  2. Patel B, Gupta N, Ahsan F. Particle engineering to enhance or lessen particle uptake by alveolar macrophages and to influence the therapeutic outcome. Eur J Pharm Biopharm. 2015;89:163–74.

    Article  CAS  PubMed  Google Scholar 

  3. Anisimova YV, Gelperina SI, Peloquin CA, Heifets LB. Nanoparticles as antituberculosis drugs carriers: effect on activity against Mycobacterium tuberculosis in human monocyte-derived macrophages. J Nanopart Res. 2000;2:165–71.

    Article  CAS  Google Scholar 

  4. Vyas SP, Kannan ME, Jain S, Mishra V, Singh P. Design of liposomal aerosols for improved delivery of rifampicin to alveolar macrophages. Int J Pharm. 2004;269:37–49.

    Article  CAS  PubMed  Google Scholar 

  5. Yoder MA, Lamichhane G, Bishai WR. Cavitary pulmonary tuberculosis: the Holy Grail of disease transmission. Curr Sci. 2004;86(1):74–81.

    Google Scholar 

  6. Jordao L, Vieira OV. Tuberculosis: new aspects of an old disease. Int J Cell Biol. 2011. doi:10.1155/2011/403623.

    PubMed  PubMed Central  Google Scholar 

  7. Gengenbacher M, Kaufmann SHE. Mycobacterium tuberculosis: success through dormancy. FEMS Microbiol Rev. 2012;36(3):514–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Verschoor JA, Baird MS, Grooten J. Towards understanding the functional diversity of cell wall mycolic acids of Mycobacterium tuberculosis. Prog Lipid Res. 2012;51:325–39.

    Article  CAS  PubMed  Google Scholar 

  9. Bach H, Papavinasasundaram KG, Wong D, Hmama Z, Av-Gay Y. Mycobacterium tuberculosis virulence is mediated by PtpA dephosphorylation of human vacuolar protein sorting 33B. Cell Host Microbe. 2008;3:316–22.

    Article  CAS  PubMed  Google Scholar 

  10. Wong D, Bach H, Sun J, Hmama Z, Av-Gay Y. Mycobacterium tuberculosis protein tyrosine phosphatase (PtpA) excludes host vacuolar-H+−ATPase to inhibit phagosome acidification. Proc Natl Acad Sci U S A. 2011;108:19371–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wong D, Chao JD, Av-Gay Y. Mycobacterium tuberculosis-secreted phosphatases: from pathogenesis to targets for TB drug development. Trends Microbiol. 2013;21(2):100–9.

    Article  CAS  PubMed  Google Scholar 

  12. Dube D, Agrawal GP, Vyas SP. Tuberculosis: from molecular pathogenesis to effective drug carrier design. Drug Discov Today. 2012;17(13/14):760–73.

    Article  CAS  PubMed  Google Scholar 

  13. Gill S, Löbenberg R, Ku T, Azarmi S, Roa W, Prenner EJ. Nanoparticles: characteristics, mechanisms of action, and toxicity in pulmonary drug delivery – a review. J Biomed Nanotechnol. 2007;3(2):107–19.

    Article  CAS  Google Scholar 

  14. Hughes GA. Nanostructure-mediated drug delivery. Nanomed: Nanotechnol Biol Med. 2005;1(1):22–30.

    CAS  Google Scholar 

  15. Farokhzad OC, Langer R. Impact of nanotechnology on drug delivery. Am Chem Soc Pub. 2009;3(1):16–20.

    CAS  Google Scholar 

  16. Lee SH, Heng D, Ng WK, Chan H-K, Tan RBH. Nano spray drying: a novel method for preparing protein nanoparticles for protein therapy. Int J Pharm. 2011;403(1–2):192–200.

    Article  CAS  PubMed  Google Scholar 

  17. Plapied L, Duhem N, des Rieux A, Préat V. Fate of polymeric nanocarriers for oral drug delivery. Curr Opin Colloid Interface Sci. 2011;16(3):228–37.

    Article  CAS  Google Scholar 

  18. Ruge CA, Kirch J, Cañadas O, Schneider M, Perez-Gil J, Schaefer UF, et al. Uptake of nanoparticles by alveolar macrophages is triggered by surfactant protein A. Nanomed: Nanotechnol Biol Med. 2011;7:690–3.

    CAS  Google Scholar 

  19. Berger J, Reist M, Mayer JM, Felt O, Gurny R. Structure and interactions in chitosan hydrogels formed by complexation or aggregation for biomedical applications. Eur J Pharm Biopharm. 2004;57(1):35–52.

    Article  CAS  PubMed  Google Scholar 

  20. Wong TW. Chitosan and its use in design of insulin delivery system. Rec Pat Drug Deliv Formulat. 2009;3(1):8–25.

    Article  CAS  Google Scholar 

  21. Bernkop-Schnürch A, Dünnhaupt S. Chitosan-based drug delivery systems. Eur J Pharm Biopharm. 2012;81(3):463–9.

    Article  PubMed  Google Scholar 

  22. Shukla RK, Tiwari A. Carbohydrate polymers: applications and recent advances in delivering drugs to the colon. Carbohydr Polym. 2012;88(2):399–416.

    Article  CAS  Google Scholar 

  23. Feng J, Zhao L, Yu Q. Receptor-mediated stimulatory effect of oligochitosan in macrophages. Biochem Biophys Res Commun. 2004;317:414–20.

    Article  CAS  PubMed  Google Scholar 

  24. Xia W, Liu P, Zhang J, Chen J. Biological activities of chitosan and chitooligosaccharides. Food Hydrocoll. 2011;25:170–9.

    Article  CAS  Google Scholar 

  25. Yong SK, Wong TW. Chitosan for body weight management: current issues and future directions. In: Kim S-K, editor. Marine nutraceuticals: prospects and perspectives. USA: CRC Press; 2013. p. 151–68.

    Google Scholar 

  26. Wong TW, Sumiran N. Drug release property of chitosan-pectinate beads and its changes under the influence of microwave. Eur J Pharm Biopharm. 2008;69:176–88.

    Article  CAS  PubMed  Google Scholar 

  27. Wong TW, Nurulaini H. Sustained-release alginate-chitosan pellets prepared by melt pelletization technique. Drug Dev Ind Pharm. 2012;38(12):1417–27.

    Article  CAS  PubMed  Google Scholar 

  28. Rajan M, Raj V. Formation and characterization of chitosan-polylactic acid-polyethylene glycol-gelatin nanoparticles: a novel biosystem for controlled drug delivery. Carbohydr Polym. 2013;98:951–8.

    Article  CAS  PubMed  Google Scholar 

  29. Syed Mohamad Al-Azi SO, Tan YTF, Wong TW. Transforming large molecular weight pectin and chitosan into oral protein drug nanoparticulate carrier. React Funct Polym. 2014;84:45–52.

    Article  CAS  Google Scholar 

  30. Kelly C, Jefferies C, Cryan SA. Targeted liposomal drug delivery to monocytes and macrophages. J Drug Deliv. 2011. doi:10.1155/2011/727241.

    PubMed  PubMed Central  Google Scholar 

  31. Boonsongrit Y, Mitrevej A, Mueller BW. Chitosan drug binding by ionic interaction. Eur J Pharm Biopharm. 2006;62:267–74.

    Article  CAS  PubMed  Google Scholar 

  32. Huang X, Du YZ, Yuan H, Hu F-Q. Preparation and pharmacodynamics of low-molecular-weight chitosan nanoparticles containing insulin. Carbohydr Polym. 2009;76:368–73.

    Article  CAS  Google Scholar 

  33. Shimariza Ashikin WHN, Wong TW, Law CL. Plasticity of hot air-dried mannuronate- and guluronate-rich alginate films. Carbohydr Polym. 2010;81:104–13.

    Article  Google Scholar 

  34. Bagheri-Khoulenjani S, Taghizadeh S, Mirzadeh H. An investigation on the short-term biodegradability of chitosan with various molecular weights and degrees of deacetylation. Carbohydr Polym. 2009;78:773–8.

    Article  CAS  Google Scholar 

  35. Wasikiewicz JM, Yeates SG. Green molecular weight degradation of chitosan using microwave irradiation. Polym Degrad Stab. 2013;98:863–7.

    Article  CAS  Google Scholar 

  36. Kadir A, Mohd Mokhtar MT, Wong TW. Nanoparticulate assembly of mannuronic acid- and guluronic acid-rich alginate: oral insulin carrier and glucose binder. J Pharm Sci. 2013;102:4353–63.

    Article  CAS  PubMed  Google Scholar 

  37. Andrews GP, Laverty TP, Jones DS. Mucoadhesive polymeric platforms for controlled drug delivery. Eur J Pharm Biopharm. 2009;71:505–18.

    Article  CAS  PubMed  Google Scholar 

  38. Han Y, Zhao L, Yu Z, Feng J, Yu Q. Role of mannose receptor in oligochitosan-mediated stimulation of macrophage function. Int Immunopharmacol. 2005;5:1533–42.

    Article  CAS  PubMed  Google Scholar 

  39. Xu J, Zhao X, Wang X, Zhao Z, Du Y. Oligochitosan inhibits Phytopthora capisi by penetrating the cell membrane and putative binding to intracellular targets. Pestic Biochem Physiol. 2007;88:167–75.

    Article  CAS  Google Scholar 

  40. Chibowski E, Hotysz L, Szcześ A. Time dependent changes in zeta potential of freshly precipitated calcium carbonate. Colloids Surf A: Physicochem Eng Asp. 2003;222:41–54.

    Article  CAS  Google Scholar 

  41. Li XF, Feng XQ, Yang S, Fu G-Q, Wang T-P, Su Z. Chitosan kills Escherichia coli through damage to be of cell membrane mechanism. Carbohydr Polym. 2010;79:493–9.

    Article  CAS  Google Scholar 

  42. Liu H, Du Y, Wang X, Sun L. Chitosan kills bacteria through cell membrane damage. Int J Food Microbiol. 2004;95:147–55.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

The authors wish to express their heart-felt gratitude to Universiti Teknologi MARA for fund (0141903) and facility support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tin Wui Wong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chachuli, S.H.M., Nawaz, A., Shah, K. et al. In Vitro Investigation of Influences of Chitosan Nanoparticles on Fluorescein Permeation into Alveolar Macrophages. Pharm Res 33, 1497–1508 (2016). https://doi.org/10.1007/s11095-016-1893-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-016-1893-5

KEY WORDS

Navigation