Skip to main content
Log in

A Multi-Functional Tumor Theranostic Nanoplatform for MRI Guided Photothermal-Chemotherapy

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To develop a multi-functional theranostic nanoplatform with increased tumor retention, improving antitumor efficacy and decreased side effects of chemotherapy drugs.

Methods

GO@Gd nanocomposites was synthesized via decorating gadolinium (Gd) nanoparticles (GdNP) onto graphene oxide (GO), and then functionalized by polyethylene glycol (PEG2000), folic acid (FA), a widely used tumor targeting molecule, was linked to GO@Gd-PEG, finally, doxorubicin (DOX) was loaded onto GO@Gd-PEG-FA and obtained a tumor-targeting drug delivery system (GO@Gd-PEG-FA/DOX). GO@Gd-PEG-FA/DOX was characterized and explored its theranostic applications both in a cultured MCF-7 cells and tumor-bearing mice.

Results

GO@Gd-PEG-FA/DOX could efficiently cross the cell membranes, lead to more apoptosis and afford higher antitumor efficacy without obvious toxic effects to normal organs owing to its prolonged blood circulation and 7.6-fold higher DOX uptake of tumor than DOX. Besides, GO@Gd-PEG-FA/DOX also served as a powerful photothermal therapy (PTT) agent for thermal ablation of tumor and a strong T1-weighted contrast agent for tumor MRI diagnosis. The multi-functional nanoplatform also could selectively kill cancer cells in highly localized regions via the excellent tumor-targeting and MRI guided PTT abilities.

Conclusions

GO@Gd-PEG-FA/DOX exhibited excellent photothermal-chemotherapeutic efficacy, tumor-targeting property and tumor diagnostic ability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

DEG:

Diethylene glycol

DMEM:

Dulbecco modified eagle medium

DMSO:

Dimethyl sulfoxide

DOX:

Doxorubicin

EDC∙HCl:

N-(3-dimethylamino propyl-N0-ethylcar-bodiimide) hydrochloride

EG:

Ethylene glycol

FA:

Folic acid

Gd:

Gadolinium

GO:

Graphene oxide

NIR:

Near infrared

PEG2000:

Polyethylene glycol 2000

SRB:

Sulforhodamine B

References

  1. Park JH, von Maltzahn G, Ong LL, Centrone A, Hatton TA, Ruoslahti E, et al. Cooperative nanoparticles for tumor detection and photothermally triggered drug delivery. Adv Mater. 2010;22(8):880–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bagalkot V, Zhang L, Levy-Nissenbaum E, Jon S, Kantoff PW, Langer R, et al. Quantum dot-aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on bi-fluorescence resonance energy transfer. Nano Lett. 2007;7(10):3065–70.

    Article  CAS  PubMed  Google Scholar 

  3. Hao R, Xing R, Xu Z, Hou Y, Gao S, Sun S. Synthesis, functionalization, and biomedical applications of multifunctional magnetic nanoparticles. Adv Mater. 2010;22(25):2729–42.

    Article  CAS  PubMed  Google Scholar 

  4. Guo R, Li R, Li X, Zhang L, Jiang X, Liu B. Dual-functional alginic acid hybrid nanospheres for cell imaging and drug delivery. Small. 2009;5(6):709–17.

    Article  CAS  PubMed  Google Scholar 

  5. Lai CW, Wang YH, Lai CH, Yang MJ, Chen CY, Chou PT, et al. Iridium-complex-functionalized Fe3O4/SiO2 core/shell nanoparticles: a facile three-in-one system in magnetic resonance imaging, luminescence imaging, and photodynamic therapy. Small. 2008;4(2):218–24.

    Article  CAS  PubMed  Google Scholar 

  6. Shi J, Wang L, Gao J, Liu Y, Zhang J, Ma R, et al. A fullerene-based multi-functional nanoplatform for cancer theranostic applications. Biomaterials. 2014;35(22):5771–84.

    Article  CAS  PubMed  Google Scholar 

  7. Huang X, El-Sayed IH, Qian W, El-Sayed MA. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc. 2006;128(6):2115–20.

    Article  CAS  PubMed  Google Scholar 

  8. Chen J, Wang D, Xi J, Au L, Siekkinen A, Warsen A, et al. Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells. Nano Lett. 2007;7(5):1318–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Nahum E, Skippen PW, Gagnon RE, Macnab AJ, Skarsgard ED. Correlation of transcutaneous hepatic near-infrared spectroscopy readings with liver surface readings and perfusion parameters in a piglet endotoxemic shock model. Liver Int. 2006;26(10):1277–82.

    Article  CAS  PubMed  Google Scholar 

  10. Weissleder R. A clearer vision for in vivo imaging. Nat Biotechnol. 2001;19(4):316–7.

    Article  CAS  PubMed  Google Scholar 

  11. Moon HK, Lee SH, Choi HC. In vivo near-infrared mediated tumor destruction by photothermal effect of carbon nanotubes. ACS Nano. 2009;3(11):3707–13.

    Article  CAS  PubMed  Google Scholar 

  12. Liu X, Tao H, Yang K, Zhang S, Lee ST, Liu Z. Optimization of surface chemistry on single-walled carbon nanotubes for in vivo photothermal ablation of tumors. Biomaterials. 2011;32(1):144–51.

    Article  PubMed  Google Scholar 

  13. Yang K, Wan J, Zhang S, Tian B, Zhang Y, Liu Z. The influence of surface chemistry and size of nanoscale graphene oxide on photothermal therapy of cancer using ultra-low laser power. Biomaterials. 2012;33(7):2206–14.

    Article  CAS  PubMed  Google Scholar 

  14. Li M, Yang X, Ren J, Qu K, Qu X. Using graphene oxide high near-infrared absorbance for photothermal treatment of Alzheimer’s disease. Adv Mater. 2012;24(13):1722–8.

    Article  CAS  PubMed  Google Scholar 

  15. Romero-Aburto R, Narayanan TN, Nagaoka Y, Hasumura T, Mitcham TM, Fukuda T, et al. Fluorinated graphene oxide; a new multimodal material for biological applications. Adv Mater. 2013;25(39):5632–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhang W, Guo Z, Huang D, Liu Z, Guo X, Zhong H. Synergistic effect of chemo-photothermal therapy using PEGylated graphene oxide. Biomaterials. 2011;32(33):8555–61.

    Article  CAS  PubMed  Google Scholar 

  17. Castellanos-Gomez A, van Leeuwen R, Buscema M, van der Zant HS, Steele GA, Venstra WJ. Single-layer MoS(2) mechanical resonators. Adv Mater. 2013;25(46):6719–23.

    Article  CAS  PubMed  Google Scholar 

  18. Liu T, Wang C, Gu X, Gong H, Cheng L, Shi X, et al. Drug delivery with PEGylated MoS2 nano-sheets for combined photothermal and chemotherapy of cancer. Adv Mater. 2014;26(21):3433–40.

    Article  PubMed  Google Scholar 

  19. Huang Y, Hoffman C, Rajappa P, Kim JH, Hu W, Huse J, et al. Oligodendrocyte progenitor cells promote neovascularization in glioma by disrupting the blood–brain barrier. Cancer Res. 2014;74(4):1011–21.

    Article  CAS  PubMed  Google Scholar 

  20. Keeney JA, Nunley RM, Adelani M, Mall N. Magnetic resonance imaging of the hip: poor cost utility for treatment of adult patients with hip pain. Clin Orthop Relat Res. 2014;472(3):787–92.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Olmaz R, Turgutalp K, Oguz EG, Horoz M, Ozhan O, Muslu N, et al. Does the MRI or MRI contrast medium gadopentetate dimeglumine change the oxidant and antioxidant status in humans? Acta Radiol. 2013;54(1):30–4.

    Article  PubMed  Google Scholar 

  22. Wiener E, Settles M, Diederichs G. T(2) relaxation time of hyaline cartilage in presence of different gadolinium-based contrast agents. Contrast Media Mol Imaging. 2010;5(2):99–104.

    CAS  PubMed  Google Scholar 

  23. Goldstein HA, Kashanian FK, Blumetti RF, Holyoak WL, Hugo FP, Blumenfield DM. Safety assessment of gadopentetate dimeglumine in U.S. clinical trials. Radiology. 1990;174(1):17–23.

    Article  CAS  PubMed  Google Scholar 

  24. Ito M, Ogino H, Oshima H, Shiraki N, Shibamoto Y, Kasai H, et al. Evaluation of CH3-DTPA-Gd (NMS60) as a new MR contrast agent: early phase II study in brain tumors and dual dynamic contrast-enhanced imaging. Magn Reson Imaging. 2006;24(5):625–30.

    Article  CAS  PubMed  Google Scholar 

  25. Okuda T, Kawakami S, Akimoto N, Niidome T, Yamashita F, Hashida M. PEGylated lysine dendrimers for tumor-selective targeting after intravenous injection in tumor-bearing mice. J Control Release. 2006;116(3):330–6.

    Article  CAS  PubMed  Google Scholar 

  26. Hatakeyama H, Akita H, Harashima H. A multifunctional envelope type nano device (MEND) for gene delivery to tumours based on the EPR effect: a strategy for overcoming the PEG dilemma. Adv Drug Deliv Rev. 2011;63(3):152–60.

    Article  CAS  PubMed  Google Scholar 

  27. Gullotti E, Yeo Y. Extracellularly activated nanocarriers: a new paradigm of tumor targeted drug delivery. Mol Pharm. 2009;6(4):1041–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Shi J, Zhang H, Wang L, Li L, Wang H, Wang Z, et al. PEI-derivatized fullerene drug delivery using folate as a homing device targeting to tumor. Biomaterials. 2013;34(1):251–61.

    Article  CAS  PubMed  Google Scholar 

  29. Shi J, Yu X, Wang L, Liu Y, Gao J, Zhang J, et al. PEGylated fullerene/iron oxide nanocomposites for photodynamic therapy, targeted drug delivery and MR imaging. Biomaterials. 2013;34(37):9666–77.

    Article  CAS  PubMed  Google Scholar 

  30. Yang K, Feng L, Hong H, Cai W, Liu Z. Preparation and functionalization of graphene nanocomposites for biomedical applications. Nat Protoc. 2013;8(12):2392–403.

    Article  CAS  PubMed  Google Scholar 

  31. Wilbur DS, Chyan MK, Hamlin DK, Kegley BB, Risler R, Pathare PM, et al. Reagents for astatination of biomolecules: comparison of the in vivo distribution and stability of some radioiodinated/astatinated benzamidyl and nido-carboranyl compounds. Bioconjug Chem. 2004;15(1):203–23.

    Article  CAS  PubMed  Google Scholar 

  32. Zhang Z, Jia J, Lai Y, Ma Y, Weng J, Sun L. Conjugating folic acid to gold nanoparticles through glutathione for targeting and detecting cancer cells. Bioorg Med Chem. 2010;18(15):5528–34.

    Article  CAS  PubMed  Google Scholar 

  33. Hou Z, Zhan C, Jiang Q, Hu Q, Li L, Chang D, et al. Both FA- and mPEG-conjugated chitosan nanoparticles for targeted cellular uptake and enhanced tumor tissue distribution. Nanoscale Res Lett. 2011;6(1):563.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Wang C, Ning L, Wang H, Lu Z, Li X, Fan X, et al. A peptide-mediated targeting gene delivery system for malignant glioma cells. Int J Nanomedicine. 2013;8:3631–40.

    PubMed  PubMed Central  Google Scholar 

  35. Shi J, Liu Y, Wang L, Gao J, Zhang J, Yu X, et al. A tumoral acidic pH-responsive drug delivery system based on a novel photosensitizer (fullerene) for in vitro and in vivo chemo-photodynamic therapy. Acta Biomater. 2014;10:1280–91.

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

The work is supported by grants from the National Natural Science Foundation of China (Nos.81273451, 81302717 and 81101684) and Postdoctoral Science Foundation of China (2015M582210).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lin Hou or Zhenzhong Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 121 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, J., Wang, B., Chen, Z. et al. A Multi-Functional Tumor Theranostic Nanoplatform for MRI Guided Photothermal-Chemotherapy. Pharm Res 33, 1472–1485 (2016). https://doi.org/10.1007/s11095-016-1891-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-016-1891-7

KEY WORDS

Navigation