Skip to main content
Log in

Effect of Nanoparticle Surface on the HPLC Elution Profile of Liposomal Nanoparticles

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Nanoparticles have been used in diverse areas, and even broader applications are expected in the future. Since surface modification can influence the configuration and toxicity of nanoparticles, a rapid screening method is important to ensure nanoparticle quality.

Methods

We examined the effect of the nanoparticle surface morphology on the HPLC elution profile using two types of 100-nm liposomal nanoparticles (AmBisome and DOXIL).

Results

These 100-nm-sized nanoparticles eluted before the holdup time (about 4 min), even when a column packed with particles with a relatively large pore size (30 nm) was used. The elution time of the nanoparticles increased with pegylation of the nanoparticles and protein adsorption to the nanoparticles; however, the nanoparticles still eluted before the holdup time.

Conclusions

The results of this study indicate that HPLC is a suitable tool for rapid evaluation of the surface of liposomal nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

BCA:

Bicinchoninic acid

CE:

Capillary electrophoresis

DAD:

Diode array detector

DLS:

Dynamic light scattering

Ex.:

Excitation

Em.:

Emission

DSPE:

1,2-Distearoyl-sn-glycero-3-phosphoethanolamine

HPLC:

High performance liquid chromatography

NMR:

Nuclear magnetic resonance

PEG:

Polyethyleneglycol

TSP:

3-(Trimethylsilyl)propionic 2,2,3,3-d4 acid

References

  1. Rosi NL, Mirkin CA. Nanostructures in biodiagnostics. Chem Rev. 2003;105(4):1547–62.

    Article  Google Scholar 

  2. Ge J, Neofytou E, Cahill TJ, Beygui RE, Zare RN. Drug release from electric-field-responsive nanoparticles. ACS Nano. 2012;6(1):227–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Murayama S, Jo J, Shibata Y, Liang K, Santa T, Saga T, et al. The simple preparation of polyethylene glycol-based soft nanoparticles containing dual imaging probes. J Mater Chem B. 2013;1(38):4932–8.

    Article  CAS  Google Scholar 

  4. Nishiyama N, Iriyama A, Jang WD, Miyata K, Itaka K, Inoue Y, et al. Light-induced gene transfer from packaged DNA enveloped in a dendrimeric photosensitizer. Nat Mater. 2005;4(12):934–41.

    Article  CAS  PubMed  Google Scholar 

  5. Kato M. Development of analytical methods for functional analysis of intracellular protein using signal-responsive silica or organic nanoparticles. J Pharm Biomed Anal. 2016;118(1):292–306.

    Article  CAS  PubMed  Google Scholar 

  6. Itoh N, Sano A, Santa T, Kato M. Simultaneous analysis of nanoparticles and small molecules by high-performance liquid chromatography using a silica monolithic column. Analyst. 2014;139(18):4453–7.

    Article  CAS  PubMed  Google Scholar 

  7. Itoh N, Santa T, Kato M. Rapid evaluation of the quantity of drugs encapsulated within nanoparticles by high-performance liquid chromatography in a monolithic silica column. Anal Bioanal Chem. 2015;407(21):6429–34.

    Article  CAS  PubMed  Google Scholar 

  8. Itoh N, Santa T, Kato M. Rapid and mild purification method for nanoparticles from a dispersed solution using a monolithic silica disk. J Chromatogr A. 2015;1404(1):141–5.

    Article  CAS  PubMed  Google Scholar 

  9. Yamamoto T, Murakami Y, Motoyanagi J, Fukushima T, Maruyama S, Kato M. An analytical system for single nanomaterials: hyphenation of capillary electrophoresis with Raman spectrometry or with scanning probe microscopy for individual single-walled carbon nanotube analysis. Anal Chem. 2009;81(17):7336–41.

    Article  CAS  PubMed  Google Scholar 

  10. Yamamoto T, Murayama S, Kato M. Fluorescence derivatization of single walled carbon nanotubes for analysis by means of conventional CE-LIF. J Sep Sci. 2011;34(20):2866–71.

    Article  CAS  PubMed  Google Scholar 

  11. Kato M, Sasaki M, Ueyama Y, Koga A, Sano A, Higashi T, et al. Comparison of the migration behavior of nanoparticles based on polyethylene glycol and silica using micellar electrokinetic chromatography. Electrophoresis. 2015;38(3):468–74.

    CAS  Google Scholar 

  12. Amin ML, Joo JY, Yi DK, An SSA. Surface modification and local orientations of surface molecules in nanotherapeutics. J Control Release. 2015;207(1):131–42.

    Article  CAS  PubMed  Google Scholar 

  13. Karakoti AS, Hench LL, Seal S. The potential toxicity of nanomaterials-The role of surfaces. JOM. 2006;58(7):77–82.

    Article  CAS  Google Scholar 

  14. Jo DH, Kim JH, Lee TG, Kim JH. Size, surface charge, and shape determine therapeutic effects of nanoparticles on brain and retinal diseases. Nanomedicine. 2015;11(7):1603–11.

    CAS  PubMed  Google Scholar 

  15. Moore TL, Rodriguez-Lorenzo L, Hirsch V, Balog S, Urban D, Jud C, et al. Nanoparticle colloidal stability in cell culture media and impact on cellular interactions. Chem Soc Rev. 2015;44(17):6287–305.

    Article  CAS  PubMed  Google Scholar 

  16. Tenzer S, Docter D, Kuharev J, Musyanovych A, Fetz V, Hecht R, et al. Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology. Nat Nanotech. 2013;8(10):772–81.

    Article  CAS  Google Scholar 

  17. Baer DR, Gaspar DJ, Nachimuthu P, Techane SD, Castner DG. Application of surface chemical analysis tools for characterization of nanoparticles. Anal Bioanal Chem. 2010;396(3):983–1002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Baer DR, Amonette JE, Engelhard MH, Gaspar DJ, Karakoti AS, Kuchibhatla S, et al. Characterization challenges for nanomaterials. Surf Interface Anal. 2008;40(3–4):529–37.

    Article  CAS  Google Scholar 

  19. Koh AL, Shachaf CM, Elchuri S, Nolan GP, Sinclair R. Electron microscopy localization and characterization of functionalized composite organic–inorganic SERS nanoparticles on leukemia cells. Ultramicroscopy. 2008;109(1):111–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gupta S, Brouwer P, Bandyopadhyay S, Patil S, Briggs R, Jain J, et al. TEM/AFM investigation of size and surface properties of nanocrystalline ceria. J Nanosci Nanotechnol. 2005;5(7):1101–7.

    Article  CAS  PubMed  Google Scholar 

  21. Lim J, Yeap SP, Che HX, Low SC. Characterization of magnetic nanoparticle by dynamic light scattering. Nanoscale Res Lett. 2013;8:381.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Jimenez VL, Leopold MC, Mazzitelli C, Jorgenson JW, Murray RW. HPLC of monolayer-protected gold nanoclusters. Anal Chem. 2003;75(2):199–206.

    Article  CAS  PubMed  Google Scholar 

  23. Song Y, Jimenez V, McKinney C, Donkers R, Murray RW. Estimation of size for 1–2nm nanoparticles using an HPLC electrochemical detector of double layer charging. Anal Chem. 2003;75(19):5088–96.

    Article  CAS  Google Scholar 

  24. Choi MMF, Douglas AD, Murray RW. Ion-pair chromatographic separation of water-soluble gold monolayer-protected clusters. Anal Chem. 2006;78(8):2779–85.

    Article  CAS  PubMed  Google Scholar 

  25. Cabral H, Kataoka K. Progress of drug-loaded polymeric micelles into clinical studies. J Control Release. 2014;190(1):465–76.

    Article  CAS  PubMed  Google Scholar 

  26. Devadasu VR, Bhardwaj V, Kumar MN. Can controversial nanotechnology promise drug delivery? Chem Rev. 2013;113(3):1686–735.

    Article  CAS  PubMed  Google Scholar 

  27. Walkey CD, Olsen JB, Guo H, Emili A, Chan WCW. Nanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptake. J Am Chem Soc. 2012;134(4):2139–47.

    Article  CAS  PubMed  Google Scholar 

  28. Lesieur S, Grabielle-Madelmont C, Paternostre M, Ollivon M. Study of size distribution and stability of liposomes by high performance gel exclusion chromatography. Chem Phys Lipids. 1993;64(1–3):57–82.

    Article  CAS  Google Scholar 

  29. Zabaleta V, Campanero MA, Irache JM. An HPLC with evaporative light scattering detection method for the quantification of PEGs and Gantrez in PEGylated nanoparticles. J Pharm Biomed Anal. 2007;44(5):1072–8.

    Article  CAS  PubMed  Google Scholar 

  30. Cornely OA, Maertens J, Bresnik M, Ebrahimi R, Ullmann AJ, Bouza E, et al. Liposomal amphotericin B as initial therapy for invasive mold infection: A randomized trial comparing a high-loading dose regimen with standard dosing (AmBiLoad trial). Clin Infect Dis. 2007;44(10):1289–97.

    Article  CAS  PubMed  Google Scholar 

  31. Jiang W, Lionberger R, Yu LX. In vitro and in vivo characterizations of PEGylated liposomal doxorubicin. Bioanalysis. 2011;3(3):333–44.

    Article  CAS  PubMed  Google Scholar 

  32. Amamoto T, Hirata Y, Takahashi H, Kamiya M, Urano Y, Santa T, et al. Spatiotemporal activation of molecules within cells using silica nanoparticles responsive to blue-green light. J Mater Chem B. 2015;3(37):7427–33.

    Article  CAS  Google Scholar 

  33. Amamoto T, Santa T, Kato M. Reduction of molecular leaching from a gel matrix for the precisely controlled release of encapsulated molecules by light stimulus. Chem Pharm Bull. 2014;62(7):649–53.

    Article  CAS  PubMed  Google Scholar 

  34. Maeda N, Takeuchi Y, Takada M, Namba Y, Oku N. Synthesis of angiogenesis-targeted peptide and hydrophobized polyethylene glycol conjugate. Bioorg Med Chem Lett. 2004;14(4):1015–7.

    Article  CAS  PubMed  Google Scholar 

  35. Takagi K, Murayama S, Sakai T, Asai M, Santa T, Kato M. A computer simulation study of the network structure of a hydrogel prepared from a tetra-armed star pre-polymer. Soft Matter. 2014;10(20):3553–9.

    Article  CAS  PubMed  Google Scholar 

  36. Murayama S, Ishizuka F, Takagi K, Inoda H, Sano A, Santa T, et al. Small-mesh-size hydrogel for functional photocontrol of encapsulated enzymes and small fluorescent probes. Anal Chem. 2012;84(3):1374–9.

    Article  CAS  PubMed  Google Scholar 

  37. Gunawan C, Lim M, Marquis CP, Amal R. Nanoparticle–protein corona complexes govern the biological fates and functions of nanoparticles. J Mater Chem B. 2014;2(15):2060–83.

    Article  CAS  Google Scholar 

  38. Casals E, Pfaller T, Duschl A, Oostingh GJ, Puntes V. Time evolution of the nanoparticle protein corona. ACS Nano. 2010;4(7):3623–32.

    Article  CAS  PubMed  Google Scholar 

  39. Walkey CD, Chan WCW. Understanding and controlling the interaction of nanomaterials with proteins in a physiological environment. Chem Soc Rev. 2012;41(7):2780–99.

    Article  CAS  PubMed  Google Scholar 

  40. Lynch I, Dawson KA. Protein-nanoparticle interactions. Nano Today. 2008;3(1–2):40–7.

    Article  CAS  Google Scholar 

  41. Lundqvist M, Stigler J, Cedervall T, Berggård T, Flanagan MB, Lynch I, et al. The evolution of the protein corona around nanoparticles: a test study. ACS Nano. 2011;5(9):7503–9.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

This work was supported by grants (Kakenhi) from the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan, and JSPS Core-to-Core Program, A. Advanced Research Networks. We thank Prof. T. Ozeki (Nogoya City Univ., Japan) and Mr. K. Kurono (Shoko Scientific Co., Ltd., Japan) for advice of pegylation of AmBisome and technical assistance with the size analysis of the nanoparticles using MALS, respectively. The author declares no competing financial interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaru Kato.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Itoh, N., Yamamoto, E., Santa, T. et al. Effect of Nanoparticle Surface on the HPLC Elution Profile of Liposomal Nanoparticles. Pharm Res 33, 1440–1446 (2016). https://doi.org/10.1007/s11095-016-1886-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-016-1886-4

KEY WORDS

Navigation