Skip to main content

Advertisement

Log in

Novel Water-Borne Polyurethane Nanomicelles for Cancer Chemotherapy: Higher Efficiency of Folate Receptors Than TRAIL Receptors in a Cancerous Balb/C Mouse Model

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

Since the introduction of nanocarriers, the delivery of chemotherapeutic agents for treatment of patients with cancer has been possible with better effectiveness. The latest findings are also support that further enhancement in therapeutic effectiveness of these nanocarriers can be attained, if surface decoration with proper targeting agents is considered.

Methods

This study aimed at treating a variety of 4T1 murine breast cancer cell line, mainly demonstrating high folate and TRAIL receptor expression of cancerous cells. The therapeutic efficacy of paclitaxel loaded Cremophore EL (Taxol®), paclitaxel loaded waterborne polyurethane nanomicelles (PTX-PU) and paclitaxel loaded waterborne polyurethane nanomicelles conjugated with folate (PTX-PU-FA) and TRAIL (PTX-PU-TRAIL) on treating 4T1 cell was also compared.

Results

The findings that worth noting are: PTX-PU outperformed Taxol® in a Balb/C mouse model, furthermore, tumor growth was adequately curbed by folate and TRAIL-decorated nanomicelles rather than the unconjugated formulation. Tumors of mice treated with PTX-PU-FA and PTX-PU-TRAIL shrank substantially compared to those treated with Taxol®, PTX-PU and PTX-PU-TRAIL (average 573 mm3 versus 2640, 846, 717 mm3 respectively), 45 days subsequent to tumor inoculation. The microscopic study of hematoxylin-eosin stained tumors tissue and apoptotic cell fraction substantiated that the most successful therapeutic effects have been observed for the mice treated with PTX-PU-FA (about 90% in PTX-PU-FA versus 75%, 60%, 15% in PTX-PU-TRAIL, PTX-PU, and Taxol® group respectively).

Conclusions

Using folate-targeted nanocarriers to treat cancers characterized by a high level of folate ligand expression is well substantiated by the findings of this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

CMC:

Critical micelle concentration

DLS:

Dynamic light scattering

DMPA:

Dimethylolpropionic acid

DMSO:

Ddimethyl sulfoxide

FR:

Folate receptor

H&E:

Hematoxylin-eosin

MTT:

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

NMP:

N-methyl-2-pyrrolidone

PTMEG:

Poly(tetramethylene ether) glycol

PTX:

Paclitaxel

PUs:

Polyurethanes

TDI:

Toluene diisocyanate

TEA:

Triethanolamine

TRAIL:

TNF-related apoptosis-including ligand

REFERENCES

  1. Guo S, Huang L. Nanoparticles containing insoluble drug for cancer therapy. Biotechnol Adv. 2014;32(4):778–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Danquah MK, Zhang XA, Mahato RI. Extravasation of polymeric nanomedicines across tumor vasculature. Adv Drug Deliv Rev. 2011;63(8):623–39.

    Article  PubMed  Google Scholar 

  3. Podduturi VP, Magana IB, O’Neal DP, Derosa PA. Simulation of transport and extravasation of nanoparticles in tumors which exhibit enhanced permeability and retention effect. Comput Methods Prog Biomed. 2013;112(1):58–68.

    Article  Google Scholar 

  4. Kucinska-Lipka J, Gubanska I, Janik H, Sienkiewicz M. Fabrication of polyurethane and polyurethane based composite fibres by the electrospinning technique for soft tissue engineering of cardiovascular system. Mater Sci Eng, C. 2015;46:166–76.

    Article  CAS  Google Scholar 

  5. Shen Z, Lu D, Li Q, Zhang Z, Zhu Y. Synthesis and characterization of biodegradable polyurethane for hypopharyngeal tissue engineering. Biomed Res Int. 2015;2015:871202.

    PubMed  PubMed Central  Google Scholar 

  6. Tsai MC, Hung KC, Hung SC, Hsu SH. Evaluation of biodegradable elastic scaffolds made of anionic polyurethane for cartilage tissue engineering. Colloids Surf B: Biointerfaces. 2015;125:34–44.

    Article  CAS  PubMed  Google Scholar 

  7. Barrioni BR, de Carvalho SM, Orefice RL, de Oliveira AA, Pereira MM. Synthesis and characterization of biodegradable polyurethane films based on HDI with hydrolyzable crosslinked bonds and a homogeneous structure for biomedical applications. Mater Sci Eng, C. 2015;52:22–30.

    Article  CAS  Google Scholar 

  8. Kim JI, Pant HR, Sim HJ, Lee KM, Kim CS. Electrospun propolis/polyurethane composite nanofibers for biomedical applications. Mater Sci Eng, C. 2014;44:52–7.

    Article  Google Scholar 

  9. Moawed EA, Ishaq I, Abdul-Rahman A, El-Shahat MF. Synthesis, characterization of carbon polyurethane powder and its application for separation and spectrophotometric determination of platinum in pharmaceutical and ore samples. Talanta. 2014;121:113–21.

    Article  CAS  PubMed  Google Scholar 

  10. Cherng JY, Hou TY, Shih MF, Talsma H, Hennink WE. Polyurethane-based drug delivery systems. Int J Pharm. 2013;450(1–2):145–62.

    Article  CAS  PubMed  Google Scholar 

  11. Yu L, Zhou L, Ding M, Li J, Tan H, Fu Q, et al. Synthesis and characterization of novel biodegradable folate conjugated polyurethanes. J Colloid Interface Sci. 2011;358(2):376–83.

    Article  CAS  PubMed  Google Scholar 

  12. Solanki A, Thakore S. Cellulose crosslinked pH-responsive polyurethanes for drug delivery: alpha-hydroxy acids as drug release modifiers. Int J Biol Macromol. 2015.

  13. van der Noll R, Marchetti S, Steeghs N, Beijnen JH, Mergui-Roelvink MW, Harms E, et al. Long-term safety and anti-tumour activity of olaparib monotherapy after combination with carboplatin and paclitaxel in patients with advanced breast, ovarian or fallopian tube cancer. Br J Cancer. 2015;113(3):396–402.

    Article  PubMed  Google Scholar 

  14. Matesanz R, Trigili C, Rodriguez-Salarichs J, Zanardi I, Pera B, Nogales A, et al. Taxanes with high potency inducing tubulin assembly overcome tumoural cell resistances. Bioorg Med Chem. 2014;22(18):5078–90.

    Article  CAS  PubMed  Google Scholar 

  15. Megerdichian C, Olimpiadi Y, Hurvitz SA. nab-Paclitaxel in combination with biologically targeted agents for early and metastatic breast cancer. Cancer Treat Rev. 2014;40(5):614–25.

    Article  CAS  PubMed  Google Scholar 

  16. Satsangi A, Roy SS, Satsangi RK, Tolcher AW, Vadlamudi RK, Goins B, et al. Synthesis of a novel, sequentially active-targeted drug delivery nanoplatform for breast cancer therapy. Biomaterials. 2015;59:88–101.

    Article  CAS  PubMed  Google Scholar 

  17. Shahin M, Lavasanifar A. Novel self-associating poly(ethylene oxide)-b-poly(epsilon-caprolactone) based drug conjugates and nano-containers for paclitaxel delivery. Int J Pharm. 2010;389(1–2):213–22.

    Article  CAS  PubMed  Google Scholar 

  18. Buszman P, Milewski K, Zurakowski A, Pajak J, Liszka L, Buszman P, et al. Novel biodegradable polymer-coated, paclitaxel-eluting stent inhibits neointimal formation in porcine coronary arteries. Kardiol Pol. 2010;68(5):503–9.

    PubMed  Google Scholar 

  19. Kim HJ, Kim KH, Yun J, Kim SH, Kim HJ, Lee SC, et al. Phase II clinical trial of genexol(R) (paclitaxel) and carboplatin for patients with advanced non-small cell lung cancer. Cancer Res Treat. 2011;43(1):19–23.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Lim WT, Tan EH, Toh CK, Hee SW, Leong SS, Ang PC, et al. Phase I pharmacokinetic study of a weekly liposomal paclitaxel formulation (Genexol-PM) in patients with solid tumors. Ann Oncol. 2010;21(2):382–8.

    Article  CAS  PubMed  Google Scholar 

  21. Zhong Y, Zhang J, Cheng R, Deng C, Meng F, Xie F, et al. Reversibly crosslinked hyaluronic acid nanoparticles for active targeting and intelligent delivery of doxorubicin to drug resistant CD44+ human breast tumor xenografts. J Control Release. 2015;205:144–54.

    Article  CAS  PubMed  Google Scholar 

  22. Molavi O, Xiong XB, Douglas D, Kneteman N, Nagata S, Pastan I, et al. Anti-CD30 antibody conjugated liposomal doxorubicin with significantly improved therapeutic efficacy against anaplastic large cell lymphoma. Biomaterials. 2013;34(34):8718–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mornet E, Carmoy N, Laine C, Lemiegre L, Le Gall T, Laurent I, et al. Folate-equipped nanolipoplexes mediated efficient gene transfer into human epithelial cells. Int J Mol Sci. 2013;14(1):1477–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Liu R, Li D, He B, Xu X, Sheng M, Lai Y, et al. Anti-tumor drug delivery of pH-sensitive poly(ethylene glycol)-poly(L-histidine-)-poly(L-lactide) nanoparticles. J Control Release. 2011;152(1):49–56.

    Article  CAS  PubMed  Google Scholar 

  25. Kang C, Yuan X, Li F, Pu P, Yu S, Shen C, et al. Evaluation of folate-PAMAM for the delivery of antisense oligonucleotides to rat C6 glioma cells in vitro and in vivo. J Biomed Mater Res A. 2010;93(2):585–94.

    PubMed  Google Scholar 

  26. Della-Longa S, Arcovito A. Intermediate states in the binding process of folic acid to folate receptor alpha: insights by molecular dynamics and metadynamics. J Comput Aided Mol Des. 2015;29(1):23–35.

    Article  CAS  PubMed  Google Scholar 

  27. Tyagi N, Ghosh PC. Folate receptor mediated targeted delivery of ricin entrapped into sterically stabilized liposomes to human epidermoid carcinoma (KB) cells: effect of monensin intercalated into folate-tagged liposomes. Eur J Pharm Sci. 2011;43(4):343–53.

    Article  CAS  PubMed  Google Scholar 

  28. Li L, An X, Yan X. Folate-polydiacetylene-liposome for tumor targeted drug delivery and fluorescent tracing. Colloids Surf B: Biointerfaces. 2015;134:235–9.

    Article  CAS  PubMed  Google Scholar 

  29. Shmeeda H, Amitay Y, Gorin J, Tzemach D, Mak L, Ogorka J, et al. Delivery of zoledronic acid encapsulated in folate-targeted liposome results in potent in vitro cytotoxic activity on tumor cells. J Control Release. 2010;146(1):76–83.

    Article  CAS  PubMed  Google Scholar 

  30. Wang W, Cheng D, Gong F, Miao X, Shuai X. Design of multifunctional micelle for tumor-targeted intracellular drug release and fluorescent imaging. Adv Mater. 2012;24(1):115–20.

    Article  CAS  PubMed  Google Scholar 

  31. Cheng D, Cao N, Chen J, Yu X, Shuai X. Multifunctional nanocarrier mediated co-delivery of doxorubicin and siRNA for synergistic enhancement of glioma apoptosis in rat. Biomaterials. 2012;33(4):1170–9.

    Article  CAS  PubMed  Google Scholar 

  32. Chen YC, Chiang CF, Chen LF, Liang PC, Hsieh WY, Lin WL. Polymersomes conjugated with des-octanoyl ghrelin and folate as a BBB-penetrating cancer cell-targeting delivery system. Biomaterials. 2014;35(13):4066–81.

    Article  CAS  PubMed  Google Scholar 

  33. Li L, Yang Q, Zhou Z, Zhong J, Huang Y. Doxorubicin-loaded, charge reversible, folate modified HPMA copolymer conjugates for active cancer cell targeting. Biomaterials. 2014;35(19):5171–87.

    Article  CAS  PubMed  Google Scholar 

  34. Luo K, Li C, Li L, She W, Wang G, Gu Z. Arginine functionalized peptide dendrimers as potential gene delivery vehicles. Biomaterials. 2012;33(19):4917–27.

    Article  CAS  PubMed  Google Scholar 

  35. Martinez-Lostao L, Marzo I, Anel A, Naval J. Targeting the Apo2L/TRAIL system for the therapy of autoimmune diseases and cancer. Biochem Pharmacol. 2012;83(11):1475–83.

    Article  CAS  PubMed  Google Scholar 

  36. Kelley SK, Ashkenazi A. Targeting death receptors in cancer with Apo2L/TRAIL. Curr Opin Pharmacol. 2004;4(4):333–9.

    Article  CAS  PubMed  Google Scholar 

  37. Leong S, Cohen RB, Gustafson DL, Langer CJ, Camidge DR, Padavic K, et al. Mapatumumab, an antibody targeting TRAIL-R1, in combination with paclitaxel and carboplatin in patients with advanced solid malignancies: results of a phase I and pharmacokinetic study. J Clin Oncol. 2009;27(26):4413–21.

    Article  CAS  PubMed  Google Scholar 

  38. van Roosmalen IA, Quax WJ, Kruyt FA. Two death-inducing human TRAIL receptors to target in cancer: similar or distinct regulation and function? Biochem Pharmacol. 2014;91(4):447–56.

    Article  PubMed  Google Scholar 

  39. Soria JC, Smit E, Khayat D, Besse B, Yang X, Hsu CP, et al. Phase 1b study of dulanermin (recombinant human Apo2L/TRAIL) in combination with paclitaxel, carboplatin, and bevacizumab in patients with advanced non-squamous non-small-cell lung cancer. J Clin Oncol. 2010;28(9):1527–33.

    Article  CAS  PubMed  Google Scholar 

  40. Soria JC, Mark Z, Zatloukal P, Szima B, Albert I, Juhasz E, et al. Randomized phase II study of dulanermin in combination with paclitaxel, carboplatin, and bevacizumab in advanced non-small-cell lung cancer. J Clin Oncol. 2011;29(33):4442–51.

    Article  CAS  PubMed  Google Scholar 

  41. Demetri GD, Le Cesne A, Chawla SP, Brodowicz T, Maki RG, Bach BA, et al. First-line treatment of metastatic or locally advanced unresectable soft tissue sarcomas with conatumumab in combination with doxorubicin or doxorubicin alone: a phase I/II open-label and double-blind study. Eur J Cancer. 2012;48(4):547–63.

    Article  CAS  PubMed  Google Scholar 

  42. Rocha Lima CM, Bayraktar S, Flores AM, MacIntyre J, Montero A, Baranda JC, et al. Phase Ib study of drozitumab combined with first-line mFOLFOX6 plus bevacizumab in patients with metastatic colorectal cancer. Cancer Investig. 2012;30(10):727–31.

    Article  CAS  Google Scholar 

  43. Zhao CLWM, Riess G, Croucher MD. Fluorescence probe techniques used to study micelle formation in water-soluble block copolymers. Langmuir. 1990;6:514–6.

    Article  CAS  Google Scholar 

  44. Cho YW, Lee J, Lee SC, Huh KM, Park K. Hydrotropic agents for study of in vitro paclitaxel release from polymeric micelles. J Control Release. 2004;97(2):249–57.

    Article  CAS  PubMed  Google Scholar 

  45. Hu FQ, Ren GF, Yuan H, Du YZ, Zeng S. Shell cross-linked stearic acid grafted chitosan oligosaccharide self-aggregated micelles for controlled release of paclitaxel. Colloids Surf B: Biointerfaces. 2006;50(2):97–103.

    Article  CAS  PubMed  Google Scholar 

  46. Shah VP, Tsong Y, Sathe P, Liu JP. In vitro dissolution profile comparison--statistics and analysis of the similarity factor, f2. Pharm Res. 1998;15(6):889–96.

    Article  CAS  PubMed  Google Scholar 

  47. Barzegar-Jalali M, Adibkia K, Valizadeh H, Shadbad MR, Nokhodchi A, Omidi Y, et al. Kinetic analysis of drug release from nanoparticles. J Pharm Pharm Sci. 2008;11(1):167–77.

    CAS  PubMed  Google Scholar 

  48. Ernsting MJ, Murakami M, Undzys E, Aman A, Press B, Li SD. A docetaxel-carboxymethylcellulose nanoparticle outperforms the approved taxane nanoformulation, Abraxane, in mouse tumor models with significant control of metastases. J Control Release. 2012;162(3):575–81.

    Article  CAS  PubMed  Google Scholar 

  49. Cardiff RD, Miller CH, Munn RJ. Manual hematoxylin and eosin staining of mouse tissue sections. Cold Spring Harb Protoc. 2014;2014(6):655–8.

    PubMed  Google Scholar 

  50. Marchetti C, Palaia I, Giorgini M, De Medici C, Iadarola R, Vertechy L, et al. Targeted drug delivery via folate receptors in recurrent ovarian cancer: a review. OncoTargets Ther. 2014;7:1223–36.

    Article  CAS  Google Scholar 

  51. Kemp SJ, Thorley AJ, Gorelik J, Seckl MJ, O’Hare MJ, Arcaro A, et al. Immortalization of human alveolar epithelial cells to investigate nanoparticle uptake. Am J Respir Cell Mol Biol. 2008;39(5):591–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Xu H, Yao Q, Cai C, Gou J, Zhang Y, Zhong H, et al. Amphiphilic poly(amino acid) based micelles applied to drug delivery: the in vitro and in vivo challenges and the corresponding potential strategies. J Control Release. 2015;199:84–97.

    Article  CAS  PubMed  Google Scholar 

  53. Khan MS, Pandey S, Talib A, Bhaisare ML, Wu HF. Controlled delivery of dopamine hydrochloride using surface modified carbon dots for neuro diseases. Colloids Surf B: Biointerfaces. 2015;134:140–6.

    Article  CAS  PubMed  Google Scholar 

  54. Tamimi F, Torres J, Bassett D, Barralet J, Cabarcos EL. Resorption of monetite granules in alveolar bone defects in human patients. Biomaterials. 2010;31(10):2762–9.

    Article  CAS  PubMed  Google Scholar 

  55. Yang C, Chen H, Zhao J, Pang X, Xi Y, Zhai G. Development of a folate-modified curcumin loaded micelle delivery system for cancer targeting. Colloids Surf B: Biointerfaces. 2014;121:206–13.

    Article  CAS  PubMed  Google Scholar 

  56. Khosroushahi AY, Naderi-Manesh H, Yeganeh H, Barar J, Omidi Y. Novel water-soluble polyurethane nanomicelles for cancer chemotherapy: physicochemical characterization and cellular activities. J Nanobiotechnol. 2012;10:2.

    Article  CAS  Google Scholar 

  57. Kim D, Lee ES, Oh KT, Gao ZG, Bae YH. Doxorubicin-loaded polymeric micelle overcomes multidrug resistance of cancer by double-targeting folate receptor and early endosomal pH. Small. 2008;4(11):2043–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Shi K, Jiang Y, Zhang M, Wang Y, Cui F. Tocopheryl succinate-based lipid nanospheres for paclitaxel delivery: preparation, characters, and in vitro release kinetics. Drug Deliv. 2010;17(1):1–10.

    Article  CAS  PubMed  Google Scholar 

  59. Liggins RT, Burt HM. Paclitaxel loaded poly(L-lactic acid) (PLLA) microspheres. II. The effect of processing parameters on microsphere morphology and drug release kinetics. Int J Pharm. 2004;281(1–2):103–6.

    Article  CAS  PubMed  Google Scholar 

  60. England CG, Miller MC, Kuttan A, Trent JO, Frieboes HB. Release kinetics of paclitaxel and cisplatin from two and three layered gold nanoparticles. Eur J Pharm Biopharm. 2015;92:120–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Shoaib MH, Tazeen J, Merchant HA, Yousuf RI. Evaluation of drug release kinetics from ibuprofen matrix tablets using HPMC. Pak J Pharm Sci. 2006;19(2):119–24.

    CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

The financial support of the Tabriz University of Medical Sciences is gratefully acknowledged. The authors declare that there are no conflicts of interests.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ahmad Yari Khosroushahi or Hamid Yeganeh.

Ethics declarations

Ethical Issues

No ethical issues to be promulgated.

Additional information

Elham Ajorlou and Ahmad Yari Khosroushahi contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ajorlou, E., Khosroushahi, A.Y. & Yeganeh, H. Novel Water-Borne Polyurethane Nanomicelles for Cancer Chemotherapy: Higher Efficiency of Folate Receptors Than TRAIL Receptors in a Cancerous Balb/C Mouse Model. Pharm Res 33, 1426–1439 (2016). https://doi.org/10.1007/s11095-016-1884-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-016-1884-6

KEY WORDS

Navigation