Skip to main content
Log in

Experimental Model System to Study pH Shift-Induced Aggregation of Monoclonal Antibodies Under Controlled Conditions

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To present a convenient screening method for evaluating additive effects on the renaturation of an acid-exposed monoclonal antibody (mAb).

Methods

The assay involves brief incubation of a mAb at acidic pH and subsequent neutralization in the absence or presence of additive to induce mainly aggregation. An increase in absorbance depicted aggregation. The recorded aggregation data traces were fitted with a nucleation-autocatalytic growth model for the extraction of kinetic parameters.

Results

All kinetic data traces were fitted successfully with the selected model and the adjusted R square values were greater than 0.99. Trehalose had strongly stabilizing, proline mildly stabilizing and trimethylamine oxide had destabilizing effects on both the nucleation and growth phase of the reaction. Histidine was strongly stabilizing but was limited by its poor solubility.

Conclusion

The results demonstrate the suitability of the experimental mAb aggregation system and the nucleation-autocatalytic growth fit in the screening and quantification of additive effects on the renaturation of an acid-exposed mAb respectively. This will aid the investigation and derivation of quantitative structure-activity relationships of additive effects on mAb solubility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

Bis-ANS:

4, 4′-Bis (1-anilinonaphthalene 8-sulfonate)

ca.:

Circa

DMSO:

Dimethyl sulfoxide

DSF:

Differential Scanning Fluorimetry

Eq.:

Equation

HCl:

Hydrochloric acid

HPLC:

High Pressure Liquid Chromatography

HP-SEC:

High Performance–Size Exclusion Chromatography

mAb:

Monoclonal antibody

min:

Minutes

NaOH:

Sodium hydroxide

QSAR:

Quantitative Structure Activity Relationship

s:

Seconds

Tm :

(Apparent) Melting temperatures

TMAO:

Trimethylamine N-oxide

References

  1. Goswami S, Wang W, Arakawa T, Ohtake S. Developments and challenges for mAb-based therapeutics. Antibodies. 2013;2(3):452–500.

    Article  Google Scholar 

  2. Southwell AL, Patterson PH. Antibody therapy in neurodegenerative disease. Rev Neurosci. 2010;21(4):273–87.

    Article  CAS  PubMed  Google Scholar 

  3. Rosenberg AS. Effects of protein aggregates: an immunologic perspective. AAPS J. 2006;8(3):E501–7.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Vázquez-Rey M, Lang DA. Aggregates in monoclonal antibody manufacturing processes. Biotechnol Bioeng. 2011. p. 1494–508.

  5. Cromwell MEM, Hilario E, Jacobson F. Protein aggregation and bioprocessing. AAPS J. 2006. p. E572–9.

  6. Filipe V, Poole R, Oladunjoye O, Braeckmans K, Jiskoot W. Detection and characterization of subvisible aggregates of monoclonal IgG in serum. Pharm Res. 2012;29(8):2202–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wang W. Protein aggregation and its inhibition in biopharmaceutics. Int J Pharm. 2005;289(1–2):1–30.

    Article  CAS  PubMed  Google Scholar 

  8. Lilie H, Schwarz E, Rudolph R. Advances in refolding of proteins produced in E. coli. Curr Opin Biotechnol. 1998;9(5):497–501.

    Article  CAS  PubMed  Google Scholar 

  9. Philo JS, Arakawa T. Mechanisms of protein aggregation. Curr Pharm Biotechnol. 2009;10(4):348–51.

    Article  CAS  PubMed  Google Scholar 

  10. Kamerzell TJ, Esfandiary R, Joshi SB, Middaugh CR, Volkin DB. Protein-excipient interactions: mechanisms and biophysical characterization applied to protein formulation development. Adv Drug Deliv Rev Elsevier BV. 2011;63(13):1118–59.

    Article  CAS  Google Scholar 

  11. Liu HF, Ma J, Winter C, Bayer R. Recovery and purification process development for monoclonal antibody production. mAbs. 2010. p. 480–99.

  12. Dong X-Y, Huang Y, Sun Y. Refolding kinetics of denatured-reduced lysozyme in the presence of folding aids. J Biotechnol. 2004;114(1–2):135–42.

    Article  CAS  PubMed  Google Scholar 

  13. Goldberg ME, Rudolph R, Jaenicke R. A kinetic study of the competition between renaturation and aggregation during the refolding of denatured-reduced egg white lysozyme. Biochemistry. 1991;30(11):2790–7.

    Article  CAS  PubMed  Google Scholar 

  14. Hevehan DL, De Bernardez Clark E. Oxidative renaturation of lysozyme at high concentrations. Biotechnol Bioeng. 1997;54(3):221–30.

    Article  CAS  PubMed  Google Scholar 

  15. Brummitt RK, Nesta DP, Chang L, Chase SF, Laue TM, Roberts CJ. Nonnative aggregation of an IgG1 antibody in acidic conditions: part 1. Unfolding, colloidal interactions, and formation of high-molecular-weight aggregates. J Pharm Sci. 2011;100(6):2087–103.

    Article  CAS  PubMed  Google Scholar 

  16. Ishikawa T, Ito T, Endo R, Nakagawa K, Sawa E, Wakamatsu K. Influence of pH on heat-induced aggregation and degradation of therapeutic monoclonal antibodies. Biol Pharm Bull. 2010;33(8):1413–7.

    Article  CAS  PubMed  Google Scholar 

  17. Hari SB, Lau H, Razinkov VI, Chen S, Latypov RF. Acid-induced aggregation of human monoclonal IgG1 and IgG2: molecular mechanism and the effect of solution composition. Biochemistry. 2010;49(43):9328–38.

    Article  CAS  PubMed  Google Scholar 

  18. Lewis J, Ju R, Kim A, Nail S. Kinetics of low pH induced aggregation of equine IgG. J Colloid Interface Sci. 1997;196(2):170–6.

    Article  CAS  PubMed  Google Scholar 

  19. Neergaard MS, Nielsen AD, Parshad H, Van De Weert M. Stability of monoclonal antibodies at high-concentration: head-to-head comparison of the IgG1 and IgG4 subclass. J Pharm Sci. 2014;103(1):115–27.

    Article  CAS  PubMed  Google Scholar 

  20. Filipe V, Kukrer B, Hawe A, Jiskoot W. Transient molten globules and metastable aggregates induced by brief exposure of a monoclonal IgG to Low pH. J Pharm Sci. 2012;101(7):2327–39.

    Article  CAS  PubMed  Google Scholar 

  21. Samra HS, He F. Advancements in high throughput biophysical technologies: applications for characterization and screening during early formulation development of monoclonal antibodies. Mol Pharm. 2012;9(4):696–707.

    Article  CAS  PubMed  Google Scholar 

  22. Kiefhaber T, Rudolph R, Kohler HH, Buchner J. Protein aggregation in vitro and in vivo: a quantitative model of the kinetic competition between folding and aggregation. Biotechnology (N Y). 1991;9(9):825–9.

    Article  CAS  Google Scholar 

  23. Sabaté R, Gallardo M, Estelrich J. An autocatalytic reaction as a model for the kinetics of the aggregation of beta-amyloid. Biopolymers. 2003;71(2):190–5.

    Article  PubMed  Google Scholar 

  24. Morris AM, Watzky MA, Agar JN, Finke RG. Fitting neurological protein aggregation kinetic data via a 2-step, minimal/“Ockham’s razor” model: the Finke-Watzky mechanism of nucleation followed by autocatalytic surface growth. Biochemistry. 2008;47(8):2413–27.

    Article  CAS  PubMed  Google Scholar 

  25. Kamihira M, Naito A, Tuzi S, Nosaka AY, Saitô H. Conformational transitions and fibrillation mechanism of human calcitonin as studied by high-resolution solid-state 13C NMR. Protein Sci. 2000;9(5):867–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Borgia MB, Nickson AA, Clarke J, Hounslow MJ. A mechanistic model for amorphous protein aggregation of immunoglobulin-like domains. J Am Chem Soc. 2013;135(17):6456–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Stranks SD, Ecroyd H, Van Sluyter S, Waters EJ, Carver JA, von Smekal L. Model for amorphous aggregation processes. Phys Rev E Stat Nonlinear Soft Matter Phys. 2009;80(5 Pt 1):051907.

    Article  Google Scholar 

  28. Brummitt RK, Nesta DP, Chang L, Kroetsch AM, Roberts CJ. Nonnative aggregation of an IgG1 antibody in acidic conditions, part 2: nucleation and growth kinetics with competing growth mechanisms. J Pharm Sci. 2011;100(6):2104–19.

    Article  CAS  PubMed  Google Scholar 

  29. Krishnan S, Raibekas AA. Multistep aggregation pathway of human interleukin-1 receptor antagonist: kinetic, structural, and morphological characterization. Biophys J Biophys Soc. 2009;96(1):199–208.

    Article  CAS  Google Scholar 

  30. Dawson RMC, Elliot DC, Elliot WH, Jones KM. Data for biochemical research [Internet]. Oxford Science publication. 1986 [cited 2015 Aug 19]. Available from: http://www.sigmaaldrich.com/life-science/core-bioreagents/biological-buffers/learning-center/buffer-reference-center.html#citric

  31. Ghosh R, Sharma S, Chattopadhyay K. Effect of arginine on protein aggregation studied by fluorescence correlation spectroscopy and other biophysical methods. Biochemistry. 2009;48(5):1135–43.

    Article  CAS  PubMed  Google Scholar 

  32. Menzen T, Friess W. High-throughput melting-temperature analysis of a monoclonal antibody by differential scanning fluorimetry in the presence of surfactants. J Pharm Sci. 2013;102(2):415–28.

    Article  CAS  PubMed  Google Scholar 

  33. Buchner J, Renner M, Lilie H, Hinz HJ, Jaenicke R, Kiefhabel T, et al. Alternatively folded states of an immunoglobulin. Biochemistry. 1991;30(28):6922–9.

    Article  CAS  PubMed  Google Scholar 

  34. Bam NB, Cleland JL, Randolph TW. Molten globule intermediate of recombinant human growth hormone: stabilization with surfactants. Biotechnol Prog. 1996;12(6):801–9.

    Article  CAS  PubMed  Google Scholar 

  35. Chaudhuri R, Cheng Y, Middaugh CR, Volkin DB. High-throughput biophysical analysis of protein therapeutics to examine interrelationships between aggregate formation and conformational stability. AAPS J. 2014;16(1):48–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Samuel D, Kumar TK, Ganesh G, Jayaraman G, Yang PW, Chang MM, et al. Proline inhibits aggregation during protein refolding. Protein Sci. 2000;9(2):344–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zou Q, Bennion BJ, Daggett V, Murphy KP. The molecular mechanism of stabilization of proteins by TMAO and its ability to counteract the effects of urea. J Am Chem Soc. 2002;124(7):1192–202.

    Article  CAS  PubMed  Google Scholar 

  38. Scaramozzino F, Peterson DW, Farmer P, Gerig JT, Graves DJ, Lew J. TMAO promotes fibrillization and microtubule assembly activity in the C-terminal repeat region of tau. Biochemistry. 2006;45(11):3684–91.

    Article  CAS  PubMed  Google Scholar 

  39. Yam GHF, Wang K, Jhanji V, Choy KW, Baum L, Pang CP. In vitro amyloid aggregate forming ability of TGFBI mutants that cause corneal dystrophies. Investig Ophthalmol Vis Sci. 2012;53(9):5890–8.

    Article  CAS  Google Scholar 

  40. Taneja S, Ahmad F. Increased thermal stability of proteins in the presence of amino acids. Biochem J. 1994;303(Pt 1):147–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Falconer RJ, Chan C, Hughes K, Munro TP. Stabilization of a monoclonal antibody during purification and formulation by addition of basic amino acid excipients. J Chem Technol Biotechnol. 2011;86(7):942–8.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

This research was funded by the Federal Ministry of Education and Research, Germany (BMBF), grant number 0315338A. The authors are grateful to Bernd Burghardt for preliminary data exploration and programming sessions in R statistical software. Thanks are due to René Handrick, Karen Schwab, Fabian Bickel, Albrecht Weber and Alba Signes Marrahi for gifts of mAb1 at various time points during the execution of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olubukayo-Opeyemi Oyetayo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oyetayo, OO., Kiefer, H. Experimental Model System to Study pH Shift-Induced Aggregation of Monoclonal Antibodies Under Controlled Conditions. Pharm Res 33, 1359–1369 (2016). https://doi.org/10.1007/s11095-016-1878-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-016-1878-4

KEY WORDS

Navigation