Skip to main content

Advertisement

Log in

Glucose-Based Mesoporous Carbon Nanospheres as Functional Carriers for Oral Delivery of Amphiphobic Raloxifene: Insights into the Bioavailability Enhancement and Lymphatic Transport

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Oral therapy with raloxifene (RXF), an amphiphobic drug for remedy of the postmenopausal osteoporosis and estrogen-dependent breast cancer, is less effective due to its poor bioavailability (2% or so). This work aimed to devise mesoporous carbon nanospheres (MCNs) for oral delivery of RXF and evaluate their performance in bioavailability enhancement and lymphatic transport.

Methods

Glucose-based MCNs were fabricated by hydrothermal reaction followed by high-temperature activation. RXF-loaded MCNs (RXF-MCNs) were prepared by solvent-diffusion/high-pressure homogenization and stabilized by phospholipid. RXF-MCNs were fully characterized by particle size, morphology, in vitro drug release and metabolism, in vivo pharmacokinetics and lymphatic transport, and ex vivo fluorescent imaging.

Results

The prepared RXF-MCNs were 230 nm around in particle size, showing high entrapment efficiency (95.35%) and satisfactory physical stability. The oral bioavailability of RXF was enhanced by 2.07 folds through MCNs compared with RXF suspensions in rats. It was shown that reduced intestinal metabolism due to entrapment into MCNs, active transcellular uptake and increased lymphatic transport were responsible for enhanced bioavailability as a result of transport improvement.

Conclusions

The results suggest that MCNs are suitable nanocarriers for oral delivery of poorly bioavailable RXF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

BCS:

Biopharmaceutical classification system.

CLSM:

Confocal laser scanning microscopy

DSC:

Differential calorimetric scanning

EE:

Entrapment efficiency

FCNs:

Fluorescence-labeled carbon nanospheres

MCNs:

Mesoporous carbon nanospheres

MS:

Mass spectroscopy

MWCO:

Molecular weight cut-off

PDI:

Polydispersity index

QTOF:

Quadrupole time of flight

RXF:

Raloxifene

RXF-MCNs:

Raloxifene-loaded mesoporous carbon nanospheres

SEM:

Scanning electron microscopy

TEM:

Transmission electron microscope

UGT1A1:

UDP-glucuronosyltransferase 1A1

UPLC:

Ultra performance liquid chromatography

References

  1. Sudhakar B, NagaJyothi K, Murthy KV. Nanosuspensions as a versatile carrier based drug delivery system- an overview. Curr Drug Deliv. 2014;11(3):299–305.

    Article  CAS  PubMed  Google Scholar 

  2. Harde H, Das M, Jain S. Solid lipid nanoparticles: an oral bioavailability enhancer vehicle. Expert Opin Drug Deliv. 2011;8(11):1407–24.

    Article  CAS  PubMed  Google Scholar 

  3. Gibaud S, Attivi D. Microemulsions for oral administration and their therapeutic applications. Expert Opin Drug Deliv. 2012;9(8):937–51.

    Article  CAS  PubMed  Google Scholar 

  4. Xu W, Ling P, Zhang T. Polymeric micelles, a promising drug delivery system to enhance bioavailability of poorly water-soluble drugs. J Drug Deliv. 2013;2013:340315.

    Article  PubMed Central  PubMed  Google Scholar 

  5. Martin-Banderas L, Duran-Lobato M, Munoz-Rubio I, Alvarez-Fuentes J, Fernandez-Arevalo M, Holgado MA. Functional PLGA NPs for oral drug delivery: recent strategies and developments. Mini Rev Med Chem. 2013;13(1):58–69.

    Article  CAS  PubMed  Google Scholar 

  6. Frackowiak E, Beguin F. Carbon materials for the electrochemical storage of energy in capacitors. Carbon. 2001;39(6):937–50.

    Article  CAS  Google Scholar 

  7. De Jong KP, Geus JW. Carbon nanofibers: catalytic synthesis and applications. Catal Rev. 2000;42(4):481–510.

    Article  Google Scholar 

  8. Karimi M, Solati N, Ghasemi A, Estiar MA, Hashemkhani M, Kiani P, et al. Carbon nanotubes part II: a remarkable carrier for drug and gene delivery. Expert Opin Drug Deliv. 2015;12(7):1089–105.

    Article  CAS  PubMed  Google Scholar 

  9. Kumar R, Dhanawat M, Kumar S, Singh BN, Pandit JK, Sinha VR. Carbon nanotubes: a potential concept for drug delivery applications. Recent Pat Drug Deliv Formul. 2014;8(1):12–26.

    Article  CAS  PubMed  Google Scholar 

  10. Zhang Y, Che E, Zhang M, Sun B, Gao J, Han J, et al. Increasing the dissolution rate and oral bioavailability of the poorly water-soluble drug valsartan using novel hierarchical porous carbon monoliths. Int J Pharm. 2014;473(1–2):375–83.

    Article  CAS  PubMed  Google Scholar 

  11. Yang F, Hu JH, Yang D, Long J, Luo GP, Jin C, et al. Pilot study of targeting magnetic carbon nanotubes to lymph nodes. Nanomedicine (Lond). 2009;4(3):317–30.

    Article  CAS  Google Scholar 

  12. Ye T, Xu W, Shi T, Yang R, Yang X, Wang S, et al. Targeted delivery of docetaxel to the metastatic lymph nodes: a comparison study between nanoliposomes and activated carbon nanoparticles. Asian J Pharm Sci. 2015;10(1):64–72.

    Article  Google Scholar 

  13. Gu JL, Su SS, Li YS, He QJ, Shi JL. Hydrophilic mesoporous carbon nanoparticles as carriers for sustained release of hydrophobic anti-cancer drugs. Chem Commun. 2011;47(7):2101–3.

    Article  CAS  Google Scholar 

  14. Fang Y, Zheng G, Yang J, Tang H, Zhang Y, Kong B, et al. Dual-pore mesoporous carbon@silica composite core-shell nanospheres for multidrug delivery. Angew Chem Int Ed Engl. 2014;53(21):5366–70.

    Article  CAS  PubMed  Google Scholar 

  15. Yanez JA, Wang SW, Knemeyer IW, Wirth MA, Alton KB. Intestinal lymphatic transport for drug delivery. Adv Drug Deliv Rev. 2011;63(10–11):923–42.

    Article  CAS  PubMed  Google Scholar 

  16. Fox CB, Chirra HD, Desai TA. Planar bioadhesive microdevices: a new technology for oral drug delivery. Curr Pharm Biotechnol. 2014;15(7):673–83.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Hochner-Celnikier D. Pharmacokinetics of raloxifene and its clinical application. Eur J Obs Gynecol Reprod Biol. 1999;85(1):23–9.

    Article  CAS  Google Scholar 

  18. Zhang X, Zhang T, Ye Y, Chen H, Sun H, Zhou X, et al. Phospholipid-stabilized mesoporous carbon nanospheres as versatile carriers for systemic delivery of amphiphobic SNX-2112 (a Hsp90 inhibitor) with enhanced antitumor effect. Eur J Pharm Biopharm. 2015;94:30–41.

    Article  CAS  PubMed  Google Scholar 

  19. Liu H, Sun H, Lu D, Zhang Y, Zhang X, Ma Z, et al. Identification of glucuronidation and biliary excretion as the main mechanisms for gossypol clearance: in vivo and in vitro evidence. Xenobiotica. 2014;44:696–707.

    Article  CAS  PubMed  Google Scholar 

  20. Quan E, Wang H, Dong D, Zhang X, Wu B. Characterization of chrysin glucuronidation in UGT1A1-overexpressing HeLa cells: elucidating the transporters responsible for efflux of glucuronide. Drug Metab Dispos. 2015;43(4):433–43.

    Article  CAS  PubMed  Google Scholar 

  21. Boyd M, Risovic V, Jull P, Choo E, Wasan KM. A stepwise surgical procedure to investigate the lymphatic transport of lipid-based oral drug formulations: Cannulation of the mesenteric and thoracic lymph ducts within the rat. J Pharmacol Toxicol Methods. 2004;49(2):115–20.

    Article  CAS  PubMed  Google Scholar 

  22. Hu ZH, Srinivasan MP, Ni YM. Novel activation process for preparing highly microporous and mesoporous activated carbons. Carbon. 2001;39(6):877–86.

    Article  CAS  Google Scholar 

  23. Tripathi PK, Gan L, Liu M, Rao NN. Mesoporous carbon nanomaterials as environmental adsorbents. J Nanosci Nanotechnol. 2014;14(2):1823–37.

    Article  CAS  PubMed  Google Scholar 

  24. Ma P-C, Siddiqui NA, Mäder E, Kim J-K. Correlation between electrokinetic potential, dispersibility, surface chemistry and energy of carbon nanotubes. Compos Sci Technol. 2011;71(14):1644–51.

    Article  CAS  Google Scholar 

  25. Zhang Y, Wang H, Gao C, Li X, Li L. Highly ordered mesoporous carbon nanomatrix as a new approach to improve the oral absorption of the water-insoluble drug, simvastatin. Eur J Pharm Sci. 2013;49(5):864–72.

    Article  CAS  PubMed  Google Scholar 

  26. Sun H, Zhou X, Zhang X, Wu B. Decreased expression of multidrug resistance-associated protein 4 (MRP4/ABCC4) leads to reduced glucuronidation of flavonoids in UGT1A1-Overexpressing HeLa cells: the role of futile recycling. J Agric Food Chem. 2015;63(26):6001–8.

    Article  CAS  PubMed  Google Scholar 

  27. Zhang X, Dong D, Wang H, Ma Z, Wang Y, Wu B. Stable knock-down of efflux transporters leads to reduced glucuronidation in UGT1A1-overexpressing HeLa cells: the evidence for glucuronidation-transport interplay. Mol Pharm. 2015;12(4):1268–78.

    Article  CAS  PubMed  Google Scholar 

  28. Snyder KR, Sparano N, Malinowski JM. Raloxifene hydrochloride. Am J Health Syst Pharm. 2000;57(18):1669–75.

    CAS  PubMed  Google Scholar 

  29. Zhu J, Liao L, Bian X, Kong J, Yang P, Liu B. pH-controlled delivery of doxorubicin to cancer cells, based on small mesoporous carbon nanospheres. Small. 2012;8(17):2715–20.

    Article  CAS  PubMed  Google Scholar 

  30. Saha D, Warren KE, Naskar AK. Soft-templated mesoporous carbons as potential materials for oral drug delivery. Carbon. 2014;71:47–57.

    Article  CAS  Google Scholar 

  31. Wang T, Zhao P, Zhao Q, Wang B, Wang S. The mechanism for increasing the oral bioavailability of poorly water-soluble drugs using uniform mesoporous carbon spheres as a carrier. Drug Deliv. 2014;1–9.

  32. Zhang Y, Zhao Q, Zhu W, Zhang L, Han J, Lin Q, et al. Synthesis and evaluation of mesoporous carbon/lipid bilayer nanocomposites for improved oral delivery of the poorly water-soluble drug, nimodipine. Pharm Res. 2015;32(7):2372–83.

    Article  CAS  PubMed  Google Scholar 

  33. Wan L, Wang X, Zhu W, Zhang C, Song A, Sun C, et al. Folate-polyethyleneimine functionalized mesoporous carbon nanoparticles for enhancing oral bioavailability of paclitaxel. Int J Pharm. 2015;484(1–2):207–17.

    Article  CAS  PubMed  Google Scholar 

  34. Dobbins RL, Greenway FL, Chen L, Liu Y, Breed SL, Andrews SM, et al. Selective sodium-dependent glucose transporter 1 inhibitors block glucose absorption and impair glucose-dependent insulinotropic peptide release. Am J Physiol Gastrointest Liver Physiol. 2015;308(11):G946–54.

    Article  PubMed  Google Scholar 

  35. Gencoglu MF, Spurri A, Franko M, Chen J, Hensley DK, Heldt CL, et al. Biocompatibility of soft-templated mesoporous carbons. ACS AppL Mater Interfaces. 2014;6(17):15068–77.

    Article  CAS  PubMed  Google Scholar 

  36. Vaijayanthimala V, Cheng PY, Yeh SH, Liu KK, Hsiao CH, Chao JI, et al. The long-term stability and biocompatibility of fluorescent nanodiamond as an in vivo contrast agent. Biomaterials. 2012;33(31):7794–802.

    Article  CAS  PubMed  Google Scholar 

  37. Zhu Q, Li X, Xia D, Yu H, Chen D, Fan W, et al. Lipid-based formulations for oral drug delivery: effects on drug absorption and metabolism. Curr Drug Metab. 2015;16(3):200–10.

    Article  CAS  PubMed  Google Scholar 

  38. Reineke J, Cho DY, Dingle YL, Cheifetz P, Laulicht B, Lavin D, et al. Can bioadhesive nanoparticles allow for more effective particle uptake from the small intestine? J Control Release. 2013;170(3):477–84.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments and Disclosures

This work was supported by the National Natural Science Foundation of China (No. 81402855), and the authors were also grateful for the financial assistance from the National High-tech R&D Program of China (863 Program) (No. SS2015AA020916).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Baojian Wu or Xingwang Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, Y., Zhang, T., Li, W. et al. Glucose-Based Mesoporous Carbon Nanospheres as Functional Carriers for Oral Delivery of Amphiphobic Raloxifene: Insights into the Bioavailability Enhancement and Lymphatic Transport. Pharm Res 33, 792–803 (2016). https://doi.org/10.1007/s11095-015-1827-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-015-1827-7

Key Words

Navigation