Skip to main content

Advertisement

Log in

In Vivo Toxicity and Immunological Characterization of Detoxified Recombinant Botulinum Neurotoxin Type A

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

A double-mutant E224A/E262A full-length botulinum neurotoxin (BoNT) Type A with structural similarity to native BoNT/A but lacking the endopeptidase activity provides an ideal surrogate for testing pharmacokinetics and immunochemical characteristics of BoNT.

Methods

We determined lethality (LD50) of deactivated recombinant botulinum neurotoxin (drBoNT/A) to be 24.0 μg by intraperitoneal route (i.p). The polypeptide drBoNT/A labeled with near infra-red dye 800 (NIR 800) was used to examine its distribution to different organs using whole body imaging when administered to mice via intravenous (i.v) or i.p route. Also, drBoNT/A was used to evaluate its immunogenicity in Balb/C mice model.

Results

drBoNT/A was found to be highly immunogenic when tested under various in vivo conditions in Balb/C mice model. For the first time we have demonstrated that a full length 150 kDa drBoNT/A, by administering via inhalation route in mice model, has evoked both circulating immunoglobulin levels of IgG and secretory IgA at the mucosal surface. The immunoglobulin levels were sufficient enough to protect against the challenge dose of native BoNT toxin in mice model. Tissue distribution of drBoNT/A seems to be similar to that of native toxin.

Conclusions

Based on the characteristics described in this report this nontoxic holotoxin protein will assist us to explore the window of opportunity available for therapeutic treatment in case of unnatural poisoning, and also it can be an effective vaccine candidate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

ABSL-3:

Animal Biosafety Level 3

BAL:

Broncho-alveolar lavage

BCA:

Bicinchoninic acid protein assay

Bis-Tris:

[Bis (2-hydroxyethyl) imino-tris (hydroxymethyl) methane-HCl]

BoNT/A:

Full-length botulinum neurotoxin Type A

drBoNT/A:

Deactivated recombinant botulinum neurotoxin type A

eGFP:

Enhanced Green Fluorescent Protein

ELISA:

Enzyme-linked immunosorbent assay

FRET:

Fluorescence energy resonance transfer

HC:

Heavy Chain

i.p:

Intraperitoneal route

i.v:

Intravenous route

IgA:

Immunoglobulin A

IgG:

Immunoglobulin G

kDa:

kilodalton

LC:

Light Chain

LD50 :

A dose that proves lethal to 50% of the given population

PLGA (50:50):

Poly Lactic-co-Glycolic Acid biodegradable polymer

PVDF:

Polyvinyl difluoride membrane

rHc/A-BoNT/A:

Recombinant heavy chain of botulinum neurotoxin type A

rLC/A-BoNT/A:

Recombinant light chain of botulinum neurotoxin type A

SDS-PAGE:

Sodium dodecyl sulfate-polyacrylamide gel electrophoresis

SNAP-25:

Synaptosomal-associated protein 25

Vitamin-E TPGS:

Vitamin – E ~ D -α-Tocopherol polyethylene glycol succinate

References

  1. Singh BR. Intimate details of the most poisonous poison. Nat Struct Biol. 2000;7:617–9.

    Article  CAS  PubMed  Google Scholar 

  2. Sollner T, Whiteheart SW, Brunner M, Erdjument-Bromage H, Geromanos S, Tempst P, et al. SNAP receptors implicated in vesicle targeting and fusion. Nature. 1993;362:318–24.

    Article  CAS  PubMed  Google Scholar 

  3. Montecucco C, Schiavo G. Structure and function of tetanus and botulinum neurotoxins. Q Rev Biophys. 1995;28:423.

  4. Krieglstein KG, DasGupta BR, Henschen AH. Covalent structure of botulinum neurotoxin type A: location of sulfhydryl groups, and disulfide bridges and identification of C-termini of light and heavy chains. J Protein Chem. 1994;13:49.

    Article  CAS  PubMed  Google Scholar 

  5. Li L, Binz T, Niemann H, Singh BR. Probing the mechanistic role of glutamate residue in the zinc-binding motif of type A botulinum neurotoxin light chain. Biochemistry. 2000;39:2399.

    Article  CAS  PubMed  Google Scholar 

  6. Lacyand DB, Stevens RC. Crystal structure of botulinum neurotoxin type A and implications for toxicity. Nat Struct Biol. 1998;5:898.

    Article  Google Scholar 

  7. Agarwal R, Binz T, Swaminathan S. Analysis of active site residues of botulinum neurotoxin E by mutational, functional, and structural studies: Glu335Gln is an apoenzyme. Biochemistry. 2005;44:8291.

    Article  CAS  PubMed  Google Scholar 

  8. Binz T, Bade S, Rummel A, Kollewe A, Alves J. Arg (362) and Tyr (365) of the botulinum neurotoxin type a light chain are involved in transition state stabilization. Biochemistry. 2002;41:1717.

    Article  CAS  PubMed  Google Scholar 

  9. Rigoni M, Caccin P, Johnson EA, Montecucco C, Rossetto O. Site-directed mutagenesis identifies active-site residues of the light chain of botulinum neurotoxin type A. Biochem Biophys Res Commun. 2001;288:1231.

    Article  CAS  PubMed  Google Scholar 

  10. Rossetto O, Seveso M, Caccin P, Schiavo G, Montecucco C. Tetanus and botulinum neurotoxins: turning bad guys into good by research. Toxicon Off J Int Soc Toxinology. 2001;39:27–41.

    Article  CAS  Google Scholar 

  11. Sharmaand SK, Singh BR. Botulinum toxin in neurological diseases. Saudi Arab J Rehab. 2004;10:111–7.

    Google Scholar 

  12. Yang W, Lindo P, Riding S, Chang TW, Cai S, Van T, et al. Expression, purification and comparative characterization of deactivated recombinant botulinum neurotoxin type A. Biochem J. 2008;1:219–41.

    Google Scholar 

  13. Hale M, Stephen R, Singh BR. Near-infrared imaging of balb/c mice injected with a detoxified botulinum neurotoxin A. Botulinum J. 2010;1:349–59.

    Article  Google Scholar 

  14. Ozegbe P, Foey AD, Ahmed S, Williams RO. Impact of cAMP on the T-cell response to type II collagen. Immunology. 2004;111:35–40.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Russelland MW, Wu HY. Distribution, persistence, and recall of serum and salivary antibody responses to peroral immunization with protein antigen I/II of Streptococcus mutans coupled to the cholera toxin B subunit. Infect Immun. 1991;59:4061–70.

    Google Scholar 

  16. Ravichandran E, Al-Saleem FH, Ancharski DM, Elias MD, Singh AK, Shamim M, et al. Trivalent vaccine against botulinum toxin serotypes A, B, and E that can be administered by the mucosal route. Infect Immun. 2007;75:3043–54.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Vasquez KO, Casavant C, Peterson JD. Quantitative whole body biodistribution of fluorescent-labeled agents by non-invasive tomographic imaging. PLoS ONE. 2011;6:e20594.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Singh BR. Botulinum neurotoxin structure, engineering, and novel cellular trafficking and targeting. Neurotox Res. 2006;9:73.

    Article  CAS  PubMed  Google Scholar 

  19. Yang Y, Lindo P, Riding S, Chang TW, Cai S, Van T, et al. Expression, purification and comparative characterization of enzymatically deactivated recombinant botulinum neurotoxin type A. Botulinum J. 2008;219–241.

  20. Singh BR, Thirunavukkarasu N, Ghosal K, Ravichandran E, Kukreja R, Cai S, et al. Clostridial neurotoxins as a drug delivery vehicle targeting nervous system. Biochimie. 2010;92:1252–9.

    Article  CAS  PubMed  Google Scholar 

  21. Lee JO, Rosenfield J, Tzipori S, Park JB. M17 human neuroblastoma cell as a cell model for investigation of botulinum neurotoxin A activity and evaluation of BoNT/A specific antibody. Botulinum J. 2008;1:135–52.

    Article  Google Scholar 

  22. Kuo CL, Oyler GA, Shoemaker CB. Accelerated neuronal cell recovery from Botulinum neurotoxin intoxication by targeted ubiquitination. PLoS ONE. 2011;6:e20352.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Kuo CL, Oyler G, Shoemaker CB. Lipid and cationic polymer based transduction of botulinum holotoxin, or toxin protease alone, extends the target cell range and improves the efficiency of intoxication. Toxicon Off J Int Soc Toxinology. 2010;55:619–29.

    Article  CAS  Google Scholar 

  24. Krautz-Peterson G, Zhang Y, Chen K, Oyler GA, Feng H, Shoemaker CB. Retargeting clostridium difficile toxin B to neuronal cells as a potential vehicle for cytosolic delivery of therapeutic biomolecules to treat botulism. J Toxicol. 2012;2012:760142.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Ravichandran E, Gong Y, Al Saleem FH, Ancharski DM, Joshi SG, Simpson LL. An initial assessment of the systemic pharmacokinetics of botulinum toxin. J Pharmacol Exp Ther. 2006;318:1343–51.

    Article  CAS  PubMed  Google Scholar 

  26. Baskaran P, Lehmann TE, Topchiy E, Thirunavukkarasu N, Cai S, Singh BR, et al. Effects of enzymatically inactive recombinant botulinum neurotoxin type A at the mouse neuromuscular junctions. Toxicon. 2013;72:71–80.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Zhang P, Ray R, Singh BR, Li D, Adler M, Ray P. An efficient drug delivery vehicle for botulism countermeasure. BMC Pharmacol. 2009;9:12.

    Article  PubMed Central  PubMed  Google Scholar 

  28. Pier CL, Tepp WH, Bradshaw M, Johnson EA, Barbieri JT, Baldwin MR. Recombinant holotoxoid vaccine against botulism. Infect Immun. 2008;76:437–42.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Kiyatkin N, Maksymowych AB, Simpson LL. Induction of an immune response by oral administration of recombinant botulinum toxin. Infect Immun. 1997;65:4586.

    PubMed Central  CAS  PubMed  Google Scholar 

  30. Webb RP, Smith TJ, Wright PM, Montgomery VA, Meagher MM, Smith LA. Protection with recombinant clostridium botulinum C1 and D binding domain subunit (Hc) vaccines against C and D neurotoxins. Vaccine. 2007;25:4273.

    Article  CAS  PubMed  Google Scholar 

  31. Yu YZ, Zhang SM, Sun ZW, Wang S, Yu WY. Enhanced immune responses using plasmid DNA replicon vaccine encoding the Hc domain of clostridium botulinum neurotoxin serotype A. Vaccine. 2007;25:8843.

    Article  CAS  PubMed  Google Scholar 

  32. Yu YZ, Li N, Zhu HQ, Wang RL, Du Y, Wang S, et al. The recombinant Hc subunit of Clostridium botulinum neurotoxin serotype A is an effective botulism vaccine candidate. Vaccine. 2009;27:2816–22.

    Article  CAS  PubMed  Google Scholar 

  33. Alpar HO, Eyles JE, Williamson ED, Somavarapu S. Intranasal vaccination against plague, tetanus and diphtheria. Adv Drug Deliv Rev. 2001;51:173.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

The study was supported in part by a NIAID (NIH) grants [1U01A1078070-01and R03AI103868] and a contract [HSHQDC-12-C-00071] from the Department of Homeland Security through Omni Array Biotechnology. I would like to sincerely thank Mr. Paul Lindo, Ms. Koyel Ghosal and Ms. Harkiran Dhaliwal for being part of animal husbandry team.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bal Ram Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ravichandran, E., Janardhanan, P., Patel, K. et al. In Vivo Toxicity and Immunological Characterization of Detoxified Recombinant Botulinum Neurotoxin Type A. Pharm Res 33, 639–652 (2016). https://doi.org/10.1007/s11095-015-1816-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-015-1816-x

KEY WORDS

Navigation