Skip to main content

Advertisement

Log in

Increased Insulin Secretion from Insulin-Secreting Cells by Construction of Mixed Multicellular Spheroids

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

We previously have shown that multicellular spheroids containing insulin-secreting cells are an effective therapy for diabetic mice. Here we attempted to increase insulin secretion by incorporating other cell types into spheroids.

Materials and Methods

Multicellular spheroids of mouse MIN6 pancreatic β cells were formed in microwells alone and with aortic vascular endothelial MAEC cells or embryo fibroblast NIH3T3 cells. mRNA expression of insulin genes and insulin secretion of MIN6 cells in each spheroid were measured by real-time PCR and an insulin ELIZA kit. Moreover, collagen IV expression in each spheroid was analyzed by western blot.

Results

In all cases, uniformly sized (about 300 μm) multicellular spheroids were obtained. MAEC or NIH3T3 cell incorporation into MIN6 spheroids significantly increased mRNA expression of insulin genes and insulin secretion. In addition, collagen IV expression, which was reported to enhance insulin secretion from pancreatic β cells, also increased in their spheroids.

Conclusions

The formation of mixed multicellular spheroids containing collagen IV-expressing cells can improve the insulin secretion from insulin-secreting MIN6 cells, and mixed multicellular spheroids can be a potent therapeutic option for patients with type I diabetes mellitus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

DMEM:

Dulbecco’s Modified Eagle’s medium

ECM:

Extracellular matrix

ELISA:

Enzyme-linked immunosorbent assay

FBS:

Fetal bovine serum

KRB buffer:

Kreb’s Ringer bicarbonate buffer

MAEC:

Mouse aorta endothelial cells

M199:

Medium 199

PAGE:

Polyacrylamide gel electrophoresis

PDMS:

Polydimethylsiloxane

PNIPAAm:

Poly(N-isopropylacrylamide)

PVDF:

Polyvinylidene fluoride

SDS:

Sodium dodecyl sulfate

References

  1. Shapiro AM, Lakey JR, Ryan EA, Korbutt GS, Toth E, Warnock GL, et al. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N Engl J Med. 2000;343(4):230–8.

    Article  PubMed  CAS  Google Scholar 

  2. Barton FB, Rickels MR, Alejandro R, Hering BJ, Wease S, Naziruddin B, et al. Improvement in outcomes of clinical islet transplantation: 1999–2010. Diabetes Care. 2012;35(7):1436–45.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Qi M, Kinzer K, Danielson KK, Martellotto J, Barbaro B, Wang Y, et al. Five-year follow-up of patients with type 1 diabetes transplanted with allogeneic islets: the UIC experience. Acta Diabetol. 2014;51(5):833–43.

    Article  PubMed  CAS  Google Scholar 

  4. Ridgway D, Manas D, Shaw J, White S. Preservation of the donor pancreas for whole pancreas and islet transplantation. Clin Transpl. 2010;24(1):1–19.

    Article  CAS  Google Scholar 

  5. Zhao M, Muiesan P, Amiel SA, Srinivasan P, Asare-Anane H, Fairbanks L, et al. Human islets derived from donors after cardiac death are fully biofunctional. Am J Transplant. 2007;7(10):2318–25.

    Article  PubMed  CAS  Google Scholar 

  6. Markmann JF, Deng S, Desai NM, Huang X, Velidedeoglu E, Frank A, et al. The use of non-heart-beating donors for isolated pancreatic islet transplantation. Transplantation. 2003;75(9):1423–9.

    Article  PubMed  Google Scholar 

  7. Godfrey KJ, Mathew B, Bulman JC, Shah O, Clement S, Gallicano GI. Stem cell-based treatments for type 1 diabetes mellitus: bone marrow, embryonic, hepatic, pancreatic and induced pluripotent stem cells. Diabet Med. 2012;29(1):14–23.

    Article  PubMed  CAS  Google Scholar 

  8. Deters NA, Stokes RA, Gunton JE. Islet transplantation: factors in short-term islet survival. Arch Immunol Ther Exp. 2011;59(6):421–9.

    Article  Google Scholar 

  9. Sun N, Longaker MT, Wu JC. Human iPS cell-based therapy: considerations before clinical applications. Cell Cycle. 2010;9(5):880–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Frisco-Cabanos HL, Watanabe M, Okumura N, Kusamori K, Takemoto N, Takaya J, et al. Synthetic molecules that protect cells from anoikis and their use in cell transplantation. Angew Chem Int Ed Engl. 2014;53(42):11208–13.

    Article  PubMed  CAS  Google Scholar 

  11. Lathuilière A, Cosson S, Lutolf MP, Schneider BL, Aebischer P. A high-capacity cell macroencapsulation system supporting the long-term survival of genetically engineered allogeneic cells. Biomaterials. 2014;35(2):779–91.

    Article  PubMed  CAS  Google Scholar 

  12. Shin JY, Jeong JH, Han J, Bhang SH, Jeong GJ, Haque MR, et al. Transplantation of heterospheroids of islet cells and mesenchymal stem cells for effective angiogenesis and anti-apoptosis. Tissue Eng A. 2015;21(5–6):1024–35.

    Article  CAS  Google Scholar 

  13. Khademhosseini A, Langer R, Borenstein J, Vacanti JP. Microscale technologies for tissue engineering and biology. Proc Natl Acad Sci U S A. 2006;103(8):2480–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Ben-Ze’ev A, Robinson GS, Bucher NL, Farmer SR. Cell-cell and cell-matrix interactions differentially regulate the expression of hepatic and cytoskeletal genes in primary cultures of rat hepatocytes. Proc Natl Acad Sci U S A. 1988;85(7):2161–5.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Hamaguchi K, Utsunomiya N, Takaki R, Yoshimatsu H, Sakata T. Cellular interaction between mouse pancreatic alpha-cell and beta-cell lines: possible contact-dependent inhibition of insulin secretion. Exp Biol Med. 2003;228(10):1227–33.

    CAS  Google Scholar 

  16. Dietze D, Koenen M, Röhrig K, Horikoshi H, Hauner H, Eckel J. Impairment of insulin signaling in human skeletal muscle cells by co-culture with human adipocytes. Diabetes. 2002;51(8):2369–76.

    Article  PubMed  CAS  Google Scholar 

  17. Battiston KG, Cheung JW, Jain D, Santerre JP. Biomaterials in co-culture systems: towards optimizing tissue integration and cell signaling within scaffolds. Biomaterials. 2014;35(15):4465–76.

    Article  PubMed  CAS  Google Scholar 

  18. Lin RZ, Chang HY. Recent advances in three-dimensional multicellular spheroid culture for biomedical research. Biotechnol J. 2008;3(9–10):1172–84.

    Article  PubMed  CAS  Google Scholar 

  19. Bhang SH, Cho SW, La WG, Lee TJ, Yang HS, Sun AY, et al. Angiogenesis in ischemic tissue produced by spheroid grafting of human adipose-derived stromal cells. Biomaterials. 2011;32(11):2734–47.

    Article  PubMed  CAS  Google Scholar 

  20. Frith JE, Thomson B, Genever PG. Dynamic three-dimensional culture methods enhance mesenchymal stem cell properties and increase therapeutic potential. Tissue Eng Part C Methods. 2010;16(4):735–49.

    Article  PubMed  CAS  Google Scholar 

  21. Luebke-Wheeler JL, Nedredal G, Yee L, Amiot BP, Nyberg SL. E-cadherin protects primary hepatocyte spheroids from cell death by a caspase-independent mechanism. Cell Transplant. 2009;18(12):1281–7.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Bartosh TJ, Ylöstalo JH, Mohammadipoor A, Bazhanov N, Coble K, Claypool K, et al. Aggregation of human mesenchymal stromal cells (MSCs) into 3D spheroids enhances their antiinflammatory properties. Proc Natl Acad Sci U S A. 2010;107(31):13724–9.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Kusamori K, Nishikawa M, Mizuno N, Nishikawa T, Masuzawa A, Shimizu K, et al. Transplantation of insulin-secreting multicellular spheroids for the treatment of type 1 diabetes in mice. J Control Release. 2014;173:119–24.

    Article  PubMed  CAS  Google Scholar 

  24. Kelly C, McClenaghan NH, Flatt PR. Role of islet structure and cellular interactions in the control of insulin secretion. Islets. 2011;3(2):41–7.

    Article  PubMed  Google Scholar 

  25. Kaully T, Kaufman-Francis K, Lesman A, Levenberg S. Vascularization--the conduit to viable engineered tissues. Tissue Eng B Rev. 2009;15(2):159–69.

    Article  CAS  Google Scholar 

  26. Teramura Y, Iwata H. Bioartificial pancreas microencapsulation and conformal coating of islet of Langerhans. Adv Drug Deliv Rev. 2010;62(7–8):827–40.

    Article  PubMed  CAS  Google Scholar 

  27. Shimizu K, Kusamori K, Nishikawa M, Mizuno N, Nishikawa T, Masuzawa A, et al. Poly(N-isopropylacrylamide) coated microwell arrays for construction and recovery of multicellular spheroids. J Biosci Bioeng. 2013;115(6):695–9.

    Article  PubMed  CAS  Google Scholar 

  28. Weber LM, Hayda KN, Anseth KS. Cell-matrix interactions improve beta-cell survival and insulin secretion in three-dimensional culture. Tissue Eng A. 2008;14(12):1959–68.

    Article  CAS  Google Scholar 

  29. Idahl LA, Lernmark A, Sehlin J, Täljedal IB. The dynamics of insulin release from mouse pancreatic islet cells in suspension. Pflugers Arch. 1976;366(2–3):185–8.

    Article  PubMed  CAS  Google Scholar 

  30. Halban PA, Wollheim CB, Blondel B, Meda P, Niesor EN, Mintz DH. The possible importance of contact between pancreatic islet cells for the control of insulin release. Endocrinology. 1982;111(1):86–94.

    Article  PubMed  CAS  Google Scholar 

  31. Pipeleers D, Veld PI, Maes E, Van De Winkel M. Glucose-induced insulin release depends on functional cooperation between islet cells. Proc Natl Acad Sci U S A. 1982;79(23):7322–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Kaido T, Yebra M, Cirulli V, Montgomery AM. Regulation of human beta-cell adhesion, motility, and insulin secretion by collagen IV and its receptor α1β1. J Biol Chem. 2004;279(51):53762–9.

    Article  PubMed  CAS  Google Scholar 

  33. Jaffe EA, Nachman RL, Becker CG, Minick CR. Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunologic criteria. J Clin Invest. 1973;52(11):2745–56.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Hedman K, Kurkinen M, Alitalo K, Vaheri A, Johansson S, Höök M. Isolation of the pericellular matrix of human fibroblast cultures. J Cell Biol. 1979;81(1):83–91.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

This work was supported in part by a Grant-in-Aid for Exploratory Research (No. 23659283) from Japan Society for the Promotion of Science (JSPS), by a grant from Ritsumeikan Global Innovation Research Organization (R-GIRO), and by an iCeMS Cross-Disciplinary Research Promotion Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makiya Nishikawa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kusamori, K., Nishikawa, M., Mizuno, N. et al. Increased Insulin Secretion from Insulin-Secreting Cells by Construction of Mixed Multicellular Spheroids. Pharm Res 33, 247–256 (2016). https://doi.org/10.1007/s11095-015-1783-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-015-1783-2

KEY WORDS

Navigation