Skip to main content

Advertisement

Log in

Thermodynamic Proxies to Compensate for Biases in Drug Discovery Methods

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

We propose a framework with simple proxies to dissect the relative energy contributions responsible for standard drug discovery binding activity.

Methods

We explore a rule of thumb using hydrogen-bond donors, hydrogen-bond acceptors and rotatable bonds as relative proxies for the thermodynamic terms. We apply this methodology to several datasets (e.g., multiple small molecules profiled against kinases, Mycobacterium tuberculosis (Mtb) high throughput screening (HTS) and structure based drug design (SBDD) derived compounds, and FDA approved drugs).

Results

We found that Mtb active compounds developed through SBDD methods had statistically significantly larger PEnthalpy values than HTS derived compounds, suggesting these compounds had relatively more hydrogen bond donor and hydrogen bond acceptors compared to rotatable bonds. In recent FDA approved medicines we found that compounds identified via target-based approaches had a more balanced enthalpic relationship between these descriptors compared to compounds identified via phenotypic screens

Conclusions

As it is common to experimentally optimize directly for total binding energy, these computational methods provide alternative calculations and approaches useful for compound optimization alongside other common metrics in available software and databases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

(FCFP):

Molecular function class fingerprints

ADME/Tox:

Absorption, distribution, metabolism, excretion and toxicity

AUC:

Area under the curve

CDD:

Collaborative Drug Discovery

FDA:

Food and Drug Administration

GSK:

GlaxoSmithKline

HAC:

heavy atom count

HBA:

Hydrogen bond acceptors

HBD:

Hydrogen bond donors

HBT:

Total number of HBA and HBD

HTS:

High-throughput screening

Mtb :

Mycobacterium tuberculosis

NCATS:

National Center for Advancing Translational Sciences

NIH:

National Institute of Health

PAINS:

Pan assay INterference compoundS

PKIS:

Published kinase inhibitor set

RB:

Rotatable bonds

ROC:

Receiver operator Characteristic

SBDD:

Structure based drug design

XV:

Cross validated

References

  1. Macarron R, Banks MN, Bojanic D, Burns DJ, Cirovic DA, Garyantes T, et al. Impact of high-throughput screening in biomedical research. Nat Rev Drug Discov. 2011;10(3):188–95.

    Article  PubMed  CAS  Google Scholar 

  2. Ananthan S, Faaleolea ER, Goldman RC, Hobrath JV, Kwong CD, Laughon BE, et al. High-throughput screening for inhibitors of Mycobacterium tuberculosis H37Rv. Tuberculosis. 2009;89:334–53.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Inglese J, Shamu CE, Guy RK. Reporting data from high-throughput screening of small-molecule libraries. Nat Chem Biol. 2007;3(8):438–41.

    Article  PubMed  CAS  Google Scholar 

  4. Inglese J, Dranchak P, Moran JJ, Jang SW, Srinivasan R, Santiago Y, et al. Genome editing-enabled HTS assays expand drug target pathways for Charcot-Marie-tooth disease. ACS Chem Biol. 2014;9(11):2594–602.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Jang SW, Lopez-Anido C, Macarthur R, Svaren J, Inglese J. Identification of drug modulators targeting gene-dosage disease CMT1A. ACS Chem Biol. 2012;7(7):1205–13.

  6. Zheng W, Padia J, Urban DJ, Jadhav A, Goker-Alpan O, Simeonov A, et al. Three classes of glucocerebrosidase inhibitors identified by quantitative high-throughput screening are chaperone leads for Gaucher disease. Proc Natl Acad Sci U S A. 2007;104(32):13192–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Cain R, Narramore S, McPhillie M, Simmons K, Fishwick CW. Applications of structure-based design to antibacterial drug discovery. Bioorg Chem. 2014;55:69–76.

    Article  PubMed  CAS  Google Scholar 

  8. Lounnas V, Ritschel T, Kelder J, McGuire R, Bywater RP, Foloppe N. Current progress in structure-based rational drug design marks a new mindset in drug discovery. Comput Struct Biotechnol J. 2013;5:e201302011.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kalyaanamoorthy S, Chen YP. Structure-based drug design to augment hit discovery. Drug Discov Today. 2011;16(17–18):831–9.

    Article  PubMed  CAS  Google Scholar 

  10. Hunter WN. Structure-based ligand design and the promise held for antiprotozoan drug discovery. J Biol Chem. 2009;284(18):11749–53.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Cohen NC. Structure-based drug design and the discovery of aliskiren (Tekturna): perseverance and creativity to overcome a R&D pipeline challenge. Chem Biol Drug Des. 2007;70(6):557–65.

    Article  PubMed  CAS  Google Scholar 

  12. Brigo A, Mustata GI, Briggs JM, Moro S. Discovery of HIV-1 integrase inhibitors through a novel combination of ligand and structure-based drug design. Med Chem. 2005;1(3):263–75.

    Article  PubMed  CAS  Google Scholar 

  13. Abdulla MH, Ruelas DS, Wolff B, Snedecor J, Lim KC, Xu F, et al. Drug discovery for schistosomiasis: hit and lead compounds identified in a library of known drugs by medium-throughput phenotypic screening. PLoS Negl Trop Dis. 2009;3(7):e478.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Ballell L, Bates RH, Young RJ, Alvarez-Gomez D, Alvarez-Ruiz E, Barroso V, et al. Fueling open-source drug discovery: 177 small-molecule leads against tuberculosis. Chem Med Chem. 2013;8:313–21.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Christophe T, Jackson M, Jeon HK, Fenistein D, Contreras-Dominguez M, Kim J, et al. High content screening identifies decaprenyl-phosphoribose 2’ epimerase as a target for intracellular antimycobacterial inhibitors. PLoS Pathog. 2009;5(10):e1000645.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Murray CW, Blundell TL. Structural biology in fragment-based drug design. Curr Opin Struct Biol. 2010;20(4):497–507.

    Article  PubMed  CAS  Google Scholar 

  17. Klebe G. Applying thermodynamic profiling in lead finding and optimization. Nat Rev Drug Discov. 2015;14(2):95–110.

  18. Klebe G. The use of thermodynamic and kinetic data in drug discovery: decisive insight or increasing the puzzlement? Chem Med Chem. 2015;10(2):229–31.

    Article  PubMed  CAS  Google Scholar 

  19. Lafont V, Armstrong AA, Ohtaka H, Kiso Y, Mario Amzel L, Freire E. Compensating enthalpic and entropic changes hinder binding affinity optimization. Chem Biol Drug Des. 2007;69(6):413–22.

    Article  PubMed  CAS  Google Scholar 

  20. Ferenczy GG, Keseru GM. Thermodynamics guided lead discovery and optimization. Drug Discov Today. 2010;15(21–22):919–32.

    Article  PubMed  CAS  Google Scholar 

  21. Freire E. Thermodynamics in drug design, high affinity and selectivity, The chemical theatre of biological systems. Bozen: Beilstein -Institut; 2004.

    Google Scholar 

  22. Freire E. A thermodynamic approach to the affinity optimization of drug candidates. Chem Biol Drug Des. 2009;74(5):468–72.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Freire E. Do enthalpy and entropy distinguish first in class from best in class? Drug Discov Today. 2008;13(19–20):869–74.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. King NM, Prabu-Jeyabalan M, Bandaranayake RM, Nalam MN, Nalivaika EA, Ozen A, et al. Extreme entropy-enthalpy compensation in a drug-resistant variant of HIV-1 protease. ACS Chem Biol. 2012;7(9):1536–46.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Chodera JD, Mobley DL. Entropy-enthalpy compensation: role and ramifications in biomolecular ligand recognition and design. Annu Rev Biophys. 2013;42:121–42.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Tarcsay A, Keseru GM. Is there a link between selectivity and binding thermodynamics profiles? Drug Discov Today. 2015;20(1):86–94.

    Article  PubMed  CAS  Google Scholar 

  27. Koppisetty CA, Frank M, Kemp GJ, Nyholm PG. Computation of binding energies including their enthalpy and entropy components for protein-ligand complexes using support vector machines. J Chem Inf Model. 2013;53(10):2559–70.

    Article  PubMed  CAS  Google Scholar 

  28. Whitesides GM, Krishnamurthy VM. Designing ligands to bind proteins. Q Rev Biophys. 2005;38(4):385–95.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Ekins S, Olechno J, Williams AJ. Dispensing processes impact apparent biological activity as determined by computational and statistical analyses. PLoS ONE. 2013;8(5):e62325.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Harris D, Olechno J, Datwani S, Ellson R. Gradient, contact-free volume transfers minimize compound loss in dose–response experiments. J Biomol Screen. 2010;15(1):86–94.

    Article  PubMed  CAS  Google Scholar 

  31. Wingfield J. Impact of acoustic dispensing on data quality in HTS and hit confirmation. In. Drug Discovery 2012. Manchester, UK; 2012.

  32. Davis BJ, Erlanson DA. Learning from our mistakes: the ‘unknown knowns’ in fragment screening. Bioorg Med Chem Lett. 2013;23(10):2844–52.

    Article  PubMed  CAS  Google Scholar 

  33. Metz JT, Huth JR, Hajduk PJ. Enhancement of chemical rules for predicting compound reactivity towards protein thiol groups. J Comput Aided Mol Des. 2007;21(1–3):139–44.

    Article  PubMed  CAS  Google Scholar 

  34. Bruns RF, Watson IA. Rules for identifying potentially reactive or promiscuous compounds. J Med Chem. 2012;55(22):9763–72.

    Article  PubMed  CAS  Google Scholar 

  35. Baell JB, Holloway GA. New substructure filters for removal of Pan Assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. J Med Chem. 2010;53:2719–40.

    Article  PubMed  CAS  Google Scholar 

  36. Baell J, Walters MA. Chemistry: chemical con artists foil drug discovery. Nature. 2014;513(7519):481–3.

    Article  PubMed  CAS  Google Scholar 

  37. Brown CS, Lee MS, Leung DW, Wang T, Xu W, Luthra P, et al. In silico derived small molecules bind the filovirus VP35 protein and inhibit its polymerase cofactor activity. J Mol Biol. 2014;426(10):2045–58.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Pauli I, dos Santos RN, Rostirolla DC, Martinelli LK, Ducati RG, Timmers LF, et al. Discovery of new inhibitors of Mycobacterium tuberculosis InhA enzyme using virtual screening and a 3D-pharmacophore-based approach. J Chem Inf Model. 2013;53(9):2390–401.

    Article  PubMed  CAS  Google Scholar 

  39. Lill MA, Dobler M, Vedani A. Prediction of small-molecule binding to cytochrome P450 3A4: flexible docking combined with multidimensional QSAR. Chem Med Chem. 2006;6:73–81.

    Article  CAS  Google Scholar 

  40. Meanwell NA. Improving drug candidates by design: a focus on physicochemical properties as a means of improving compound disposition and safety. Chem Res Toxicol. 2011;24(9):1420–56.

    Article  PubMed  CAS  Google Scholar 

  41. Shultz MD. Setting expectations in molecular optimizations: strengths and limitations of commonly used composite parameters. Bioorg Med Chem Lett. 2013;23(21):5980–91.

    Article  PubMed  CAS  Google Scholar 

  42. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 1997;23:3–25.

    Article  CAS  Google Scholar 

  43. Walters WP, Ajay Murcko MA. Recognizing molecules with drug-like properties. Curr Opin Chem Biol. 1999;3(4):384–7.

    Article  PubMed  CAS  Google Scholar 

  44. Bembenek SD, Tounge BA, Reynolds CH. Ligand efficiency and fragment-based drug discovery. Drug Discov Today. 2009;14(5–6):278–83.

    Article  PubMed  CAS  Google Scholar 

  45. Reynolds CH, Tounge BA, Bembenek SD. Ligand binding efficiency: trends, physical basis, and implications. J Med Chem. 2008;51(8):2432–8.

    Article  PubMed  CAS  Google Scholar 

  46. Wunberg T, Hendrix M, Hillisch A, Lobell M, Meier H, Schmeck C, et al. Improving the hit-to-lead process: data-driven assessment of drug-like and lead-like screening hits. Drug Discov Today. 2006;11(3–4):175–80.

    Article  PubMed  CAS  Google Scholar 

  47. Kenny PW, Leitao A, Montanari CA. Ligand efficiency metrics considered harmful. J Comput Aided Mol Des. 2014;28(7):699–710.

    Article  PubMed  CAS  Google Scholar 

  48. Tang YT, Marshall GR. PHOENIX: a scoring function for affinity prediction derived using high-resolution crystal structures and calorimetry measurements. J Chem Inf Model. 2011;51(2):214–28.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Metz JT, Johnson EF, Soni NB, Merta PJ, Kifle L, Hajduk PJ. Navigating the kinome. Nat Chem Biol. 2011;7(4):200–2.

    Article  PubMed  CAS  Google Scholar 

  50. Drewry DH, Willson TM, Zuercher WJ. Seeding collaborations to advance kinase science with the GSK published kinase inhibitor set (PKIS). Curr Top Med Chem. 2014;14(3):340–2.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Strachan RT, Ferrara G, Roth BL. Screening the receptorome: an efficient approach for drug discovery and target validation. Drug Discov Today. 2006;11(15–16):708–16.

    Article  PubMed  CAS  Google Scholar 

  52. Jensen NH, Roth BL. Massively parallel screening of the receptorome. Comb Chem High Throughput Screen. 2008;11(6):420–6.

    Article  PubMed  CAS  Google Scholar 

  53. Ekins S, Freundlich JS, Hobrath JV, White EL, Reynolds RC. Combining computational methods for hit to lead optimization in mycobacterium tuberculosis drug discovery. Pharm Res. 2014;31:414–35.

  54. Reynolds RC, Ananthan S, Faaleolea E, Hobrath JV, Kwong CD, Maddox C, et al. High throughput screening of a library based on kinase inhibitor scaffolds against Mycobacterium tuberculosis H37Rv. Tuberculosis. 2012;92:72–83.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Maddry JA, Ananthan S, Goldman RC, Hobrath JV, Kwong CD, Maddox C, et al. Antituberculosis activity of the molecular libraries screening center network library. Tuberculosis. 2009;89:354–63.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Clark AM, Dole K, Coulon-Spector A, McNutt A, Grass G, Freundlich JS, Reynolds RC, Ekins S. Open source bayesian models: I. Application to ADME/Tox and drug discovery datasets. J Chem Inf Model. 2015;55:1231–45.

  57. Davis MI, Hunt JP, Herrgard S, Ciceri P, Wodicka LM, Pallares G, et al. Comprehensive analysis of kinase inhibitor selectivity. Nat Biotechnol. 2011;29(11):1046–51.

    Article  PubMed  CAS  Google Scholar 

  58. Ekins S, Freundlich JS, Hobrath JV, Lucile White E, Reynolds RC. Combining computational methods for hit to lead optimization in Mycobacterium tuberculosis drug discovery. Pharm Res. 2014;31(2):414–35.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Swinney DC, Anthony J. How were new medicines discovered? Nat Rev. 2011;10(7):507–19.

    CAS  Google Scholar 

  60. Ekins S, Bradford J, Dole K, Spektor A, Gregory K, Blondeau D, et al. A collaborative database and computational models for tuberculosis drug discovery. Mol BioSystems. 2010;6:840–51.

    Article  CAS  Google Scholar 

  61. Li R, Stafford JA. Kinase inhibitor drugs. Hoboken: Wiley; 2009.

    Book  Google Scholar 

  62. Gilli P, Ferretti V, Gilli G, Borea PA. Enthalpy-entropy compensation in drug receptor binding. J Phys Chem. 1994;98:1515–8.

    Article  CAS  Google Scholar 

  63. Ichihara O, Shimada Y, Yoshidome D. The importance of hydration thermodynamics in fragment-to-lead optimization. Chem Med Chem. 2014;9(12):2708–17.

    Article  PubMed  CAS  Google Scholar 

  64. Guo H. A simple algorithm for fitting a Gaussian function. IEEE Signal Process Mag. 2011;28:134–7.

    Article  Google Scholar 

  65. Luque I, Freire E. Structural parameterization of the binding enthalpy of small ligands. Proteins. 2002;49(2):181–90.

    Article  PubMed  CAS  Google Scholar 

  66. Brooijmans N, Sharp KA, Kuntz ID. Stability of macromolecular complexes. Proteins. 2002;48(4):645–53.

    Article  PubMed  CAS  Google Scholar 

  67. Papadatos G, Overington JP. The ChEMBL database: a taster for medicinal chemists. Future Med Chem. 2014;6(4):361–4.

    Article  PubMed  CAS  Google Scholar 

  68. Tang J, Szwajda A, Shakyawar S, Xu T, Hintsanen P, Wennerberg K, et al. Making sense of large-scale kinase inhibitor bioactivity data sets: a comparative and integrative analysis. J Chem Inf Model. 2014;54(3):735–43.

    Article  PubMed  CAS  Google Scholar 

  69. Ekins S, Honeycutt JD, Metz JT. Evolving molecules using multi-objective optimization: applying to ADME. Drug Discov Today. 2010;15:451–60.

    Article  PubMed  CAS  Google Scholar 

  70. Lowe D. The palbociclib saga: or why we need a lot of drug companies. Available from: http://pipeline.corante.com/archives/2014/08/22/the_palbociclib_saga_or_why_we_need_a_lot_of_drug_companies.php.

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

We gratefully acknowledge colleagues at CDD for the development of the CDD Vault. The CDD TB DB has been developed thanks to funding from the Bill and Melinda Gates Foundation (Grant#49852 “Collaborative drug discovery for TB through a novel database of SAR data optimized to promote data archiving and sharing”). We also thank Dr. Peter Kenny for suggesting various papers, Dr. Matthew Soellner for discussions and Dr. Daniel Erlanson and the reviewers for critical comments. BAB is an employee and SE is a consultant of CDD Inc. CAL and NKL are on the scientific advisory board of CDD Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sean Ekins.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 83 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ekins, S., Litterman, N.K., Lipinski, C.A. et al. Thermodynamic Proxies to Compensate for Biases in Drug Discovery Methods. Pharm Res 33, 194–205 (2016). https://doi.org/10.1007/s11095-015-1779-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-015-1779-y

KEY WORDS

Navigation