Skip to main content

Advertisement

Log in

Viscosity Analysis of Dual Variable Domain Immunoglobulin Protein Solutions: Role of Size, Electroviscous Effect and Protein-Protein Interactions

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

Increased solution viscosity results in difficulties in manufacturing and delivery of therapeutic protein formulations, increasing both the time and production costs, and leading to patient inconvenience. The solution viscosity is affected by the molecular properties of both the solute and the solvent. The purpose of this work was to investigate the effect of size, charge and protein-protein interactions on the viscosity of Dual Variable Domain Immunoglobulin (DVD-IgTM) protein solutions.

Methods

The effect of size of the protein molecule on solution viscosity was investigated by measuring intrinsic viscosity and excluded volume calculations for monoclonal antibody (mAb) and DVD-IgTM protein solutions. The role of the electrostatic charge resulting in electroviscous effects for DVD-IgTM protein was assessed by measuring zeta potential. Light scattering measurements were performed to detect protein-protein interactions affecting solution viscosity.

Results

DVD-IgTM protein exhibited significantly higher viscosity compared to mAb. Intrinsic viscosity and excluded volume calculations indicated that the size of the molecule affects viscosity significantly at higher concentrations, while the effect was minimal at intermediate concentrations. Electroviscous contribution to the viscosity of DVD-IgTM protein varied depending on the presence or absence of ions in the solution. In buffered solutions, negative k D and B 2 values indicated the presence of attractive interactions which resulted in high viscosity for DVD-IgTM protein at certain pH and ionic strength conditions.

Conclusions

Results show that more than one factor contributes to the increased viscosity of DVD-IgTM protein and interplay of these factors modulates the overall viscosity behavior of the solution, especially at higher concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

DLS:

Dynamic light scattering

DVD-IgTM protein:

Dual variable domain immunoglobulin protein

LLPS:

Liquid-liquid phase separation

mAb:

Monoclonal antibody

PPI:

Protein-protein Interactions

SC:

Subcutaneous

SLS:

Static light scattering

REFERENCES

  1. Evans JB, Syed BA. From the analyst’s couch: next-generation antibodies. Nat Rev Drug Discov. 2014;13(6):413–4.

    Article  PubMed  CAS  Google Scholar 

  2. Reichert JM, Beck A, Lugovskoy AA, Wurch T, Coats S, Brezski RJ. 9th annual European antibody congress, November 11-13, 2013, Geneva, Switzerland. MAbs. 2014;6(2):309–26.

    Article  PubMed  Google Scholar 

  3. Harris RJSS, Winter C. Commercial manufacturing scale formulation and analytical characterization of therapeutic recombinant antibodies. Drug Dev Res. 2004;61:137–54.

    Article  CAS  Google Scholar 

  4. Shire SJ, Shahrokh Z, Liu J. Challenges in the development of high protein concentration formulations. J Pharm Sci. 2004;93(6):1390–402.

    Article  PubMed  CAS  Google Scholar 

  5. Daugherty AL, Mrsny RJ. Formulation and delivery issues for monoclonal antibody therapeutics. Adv Drug Deliv Rev. 2006;58(5–6):686–706.

    Article  PubMed  CAS  Google Scholar 

  6. Burckbuchler V, Mekhloufi G, Giteau AP, Grossiord JL, Huille S, Agnely F. Rheological and syringeability properties of highly concentrated human polyclonal immunoglobulin solutions. Eur J Pharm Biopharm. 2010;76(3):351–6.

  7. Allmendinger A, Fischer S, Huwyler J, Mahler H-C, Schwarb E, Zarraga IE, et al. Rheological characterization and injection forces of concentrated protein formulations: An alternative predictive model for non-Newtonian solutions. Eur J Pharm Biopharm. 2014;87(2):318–28.

    Article  PubMed  CAS  Google Scholar 

  8. Simha R. Effect of concentration on the viscosity of dilute solutions. J Res Natl Bur Stand. 1949;42:409–17.

    Article  CAS  Google Scholar 

  9. Hall D, Minton AP. Macromolecular crowding: qualitative and semiquantitative successes, quantitative challenges. Biochim Biophys Acta. 2003;1649(2):127–39.

    Article  PubMed  CAS  Google Scholar 

  10. Zhou HX, Rivas G, Minton AP. Macromolecular crowding and confinement: biochemical, biophysical, and potential physiological consequences. Annu Rev Biophys. 2008;37:375–97.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Mooney M. The viscosity of a concentrated suspension of spherical particles. J Colloid Sci. 1951;6(2):162–70.

    Article  CAS  Google Scholar 

  12. Ross PD, Minton AP. Hard quasispherical model for the viscosity of hemoglobin solutions. Biochem Biophys Res Commun. 1977;76(4):971–6.

    Article  PubMed  CAS  Google Scholar 

  13. Liu J, Nguyen MD, Andya JD, Shire SJ. Reversible self-association increases the viscosity of a concentrated monoclonal antibody in aqueous solution. J Pharm Sci. 2005;94(9):1928–40.

    Article  PubMed  CAS  Google Scholar 

  14. Kanai S, Liu J, Patapoff TW, Shire SJ. Reversible self-association of a concentrated monoclonal antibody solution mediated by Fab-Fab interaction that impacts solution viscosity. J Pharm Sci. 2008;97(10):4219–27.

    Article  PubMed  CAS  Google Scholar 

  15. Yadav S, Liu J, Shire SJ, Kalonia DS. Specific interactions in high concentration antibody solutions resulting in high viscosity. J Pharm Sci. 2010;99(3):1152–68.

    Article  PubMed  CAS  Google Scholar 

  16. Yadav S, Shire SJ, Kalonia DS. Factors affecting the viscosity in high concentration solutions of different monoclonal antibodies. J Pharm Sci. 2010;99(12):4812–29.

    Article  PubMed  CAS  Google Scholar 

  17. Yadav S, Laue TM, Kalonia DS, Singh SN, Shire SJ. The influence of charge distribution on self-association and viscosity behavior of monoclonal antibody solutions. Mol Pharm. 2012;9(4):791–802.

    Article  PubMed  CAS  Google Scholar 

  18. Connolly BD, Petry C, Yadav S, Demeule B, Ciaccio N, Moore JM, et al. Weak interactions govern the viscosity of concentrated antibody solutions: high-throughput analysis using the diffusion interaction parameter. Biophys J. 2012;103(1):69–78.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Zarraga IE, Taing R, Zarzar J, Luoma J, Hsiung J, Patel A, et al. High shear rheology and anisotropy in concentrated solutions of monoclonal antibodies. J Pharm Sci. 2013;102(8):2538–49.

    Article  PubMed  CAS  Google Scholar 

  20. Yearley Eric J, Zarraga Isidro E, Shire Steven J, Scherer Thomas M, Gokarn Y, Wagner Norman J, et al. Small-angle neutron scattering characterization of monoclonal antibody conformations and interactions at high concentrations. Biophys J. 2013;105(3):720–31.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Yadav S, Shire SJ, Kalonia DS. Viscosity behavior of high-concentration monoclonal antibody solutions: correlation with interaction parameter and electroviscous effects. J Pharm Sci. 2012;101(3):998–1011.

    Article  PubMed  CAS  Google Scholar 

  22. Salinas BA, Sathish HA, Bishop SM, Harn N, Carpenter JF, Randolph TW. Understanding and modulating opalescence and viscosity in a monoclonal antibody formulation. J Pharm Sci. 2010;99(1):82–93.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Yearley EJ, Godfrin PD, Perevozchikova T, Zhang H, Falus P, Porcar L, et al. Observation of small cluster formation in concentrated monoclonal antibody solutions and its implications to solution viscosity. Biophys J. 2014;106(8):1763–70.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Du W, Klibanov AM. Hydrophobic salts markedly diminish viscosity of concentrated protein solutions. Biotechnol Bioeng. 2011;108(3):632–6.

    Article  PubMed  CAS  Google Scholar 

  25. Guo Z, Chen A, Nassar RA, Helk B, Mueller C, Tang Y, et al. Structure-activity relationship for hydrophobic salts as viscosity-lowering excipients for concentrated solutions of monoclonal antibodies. Pharm Res. 2012;29(11):3102–9.

    Article  PubMed  CAS  Google Scholar 

  26. Kamerzell TJ, Pace AL, Li M, Danilenko DM, McDowell M, Gokarn YR, et al. Polar solvents decrease the viscosity of high concentration IgG1 solutions through hydrophobic solvation and interaction: formulation and biocompatibility considerations. J Pharm Sci. 2013;102(4):1182–93.

    Article  PubMed  CAS  Google Scholar 

  27. He F, Woods CE, Trilisky E, Bower KM, Litowski JR, Kerwin BA, et al. Screening of monoclonal antibody formulations based on high-throughput thermostability and viscosity measurements: design of experiment and statistical analysis. J Pharm Sci. 2011;100(4):1330–40.

    Article  PubMed  CAS  Google Scholar 

  28. Inoue N, Takai E, Arakawa T, Shiraki K. Specific decrease in solution viscosity of antibodies by arginine for therapeutic formulations. Mol Pharm. 2014;11(6):1889–96.

    Article  PubMed  CAS  Google Scholar 

  29. Chen B, Bautista R, Yu K, Zapata G, Mulkerrin M, Chamow S. Influence of histidine on the stability and physical properties of a fully human antibody in aqueous and solid forms. Pharm Res. 2003;20(12):1952–60. English.

    Article  PubMed  CAS  Google Scholar 

  30. Yadav S, Shire SJ, Kalonia DS. Viscosity analysis of high concentration bovine serum albumin aqueous solutions. Pharm Res. 2011;28(8):1973–83.

    Article  PubMed  CAS  Google Scholar 

  31. Schmit JD, He F, Mishra S, Ketchem RR, Woods CE, Kerwin BA. Entanglement model of antibody viscosity. J Phys Chem B. 2014;118(19):5044–9.

    Article  PubMed  CAS  Google Scholar 

  32. Sarangapani Prasad S, Hudson Steven D, Migler Kalman B, Pathak Jai A. The limitations of an exclusively colloidal view of protein solution hydrodynamics and rheology. Biophys J. 2013;105(10):2418–26.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Hunter RJ. Zeta potential in colloid science: principles and applications. London: Academic; 1981.

    Google Scholar 

  34. Raut AS, Kalonia DS. Opalescence in monoclonal antibody solutions and its correlation with intermolecular interactions in dilute and concentrated solutions. J Pharm Sci. 2015;104(4):1263–74.

    Article  PubMed  CAS  Google Scholar 

  35. Harding SE, Johnson P. The concentration-dependence of macromolecular parameters. Biochem J. 1985;231(3):543–47.

  36. Berne BJ, Pecora R. Dynamic light scattering: with applications to chemistry, biology, and physics. Mineola: Courier Dover Publications; 2000.

    Google Scholar 

  37. George A, Wilson WW. Predicting protein crystallization from a dilute solution property. Acta Crystallogr D Biol Crystallogr. 1994;50(Pt 4):361–5.

    Article  PubMed  CAS  Google Scholar 

  38. Yadav S, Scherer TM, Shire SJ, Kalonia DS. Use of dynamic light scattering to determine second virial coefficient in a semidilute concentration regime. Anal Biochem. 2011;411(2):292–6.

    Article  PubMed  CAS  Google Scholar 

  39. Hiemenz PC, Rajagopalan R. Principles of colloid and surface chemistry, revised and expanded. New York: CRC Press; 1997.

    Google Scholar 

  40. Saito S, Hasegawa J, Kobayashi N, Kishi N, Uchiyama S, Fukui K. Behavior of monoclonal antibodies: relation between the second virial coefficient (B (2)) at low concentrations and aggregation propensity and viscosity at high concentrations. Pharm Res. 2012;29(2):397–410.

    Article  PubMed  CAS  Google Scholar 

  41. Chari R, Jerath K, Badkar AV, Kalonia DS. Long- and short-range electrostatic interactions affect the rheology of highly concentrated antibody solutions. Pharm Res. 2009;26(12):2607–18.

    Article  PubMed  CAS  Google Scholar 

  42. Saluja A, Badkar AV, Zeng DL, Nema S, Kalonia DS. Ultrasonic storage modulus as a novel parameter for analyzing protein-protein interactions in high protein concentration solutions: correlation with static and dynamic light scattering measurements. Biophys J. 2007;92(1):234–44.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Harding SE. The intrinsic viscosity of biological macromolecules. Progress in measurement, interpretation and application to structure in dilute solution. Prog Biophys Mol Biol. 1997;68(2–3):207–62.

    Article  PubMed  CAS  Google Scholar 

  44. Mehl JW, Oncley JL, Simha R. Viscosity and the shape of protein molecules. Science. 1940;92(2380):132–3.

    Article  PubMed  CAS  Google Scholar 

  45. Solomon OF, Ciutǎ IZ. Détermination de la viscosité intrinsèque de solutions de polymères par une simple détermination de la viscosité. J Appl Polym Sci. 1962;6(24):683–6.

    Article  CAS  Google Scholar 

  46. Saluja A, Kalonia DS. Application of ultrasonic shear rheometer to characterize rheological properties of high protein concentration solutions at microliter volume. J Pharm Sci. 2005;94(6):1161–8.

    Article  PubMed  CAS  Google Scholar 

  47. Neal BL, Lenhoff AM. Excluded volume contribution to the osmotic second virial coefficient for proteins. AICHE J. 1995;41(4):1010–4.

    Article  CAS  Google Scholar 

  48. Lilyestrom WG, Yadav S, Shire SJ, Scherer TM. Monoclonal antibody self-association, cluster formation, and rheology at high concentrations. J Phys Chem B. 2013;117(21):6373–84.

    Article  PubMed  CAS  Google Scholar 

  49. Zholkovskiy EK, Adeyinka OB, Masliyah JH. Spherical cell approach for the effective viscosity of suspensions. J Phys Chem B. 2006;110(39):19726–34.

    Article  PubMed  CAS  Google Scholar 

  50. Laue T. Proximity energies: a framework for understanding concentrated solutions. J Mol Recognit: JMR. 2012;25(3):165–73.

    Article  PubMed  CAS  Google Scholar 

  51. Israelachvili JN. Intermolecular and surface forces. 3rd ed. San Diego: Academic; 2011.

    Google Scholar 

  52. Bull HB. The electroviscous effect in egg albumin solutions. Trans Faraday Soc. 1940;35:80–4.

    Article  Google Scholar 

  53. Buzzell JG, Tanford C. The effect of charge and ionic strength on the viscosity of ribonuclease. J Phys Chem. 1956;60(9):1204–7.

    Article  CAS  Google Scholar 

  54. Tanford C, Buzzell JG. The viscosity of aqueous solutions of bovine serum albumin between pH 4.3 and 10.5. J Phys Chem. 1956;60(2):225–31.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

Authors would like to thank AbbVie Bioresearch Center, Worcester, MA for material and financial support for the work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ashlesha S. Raut or Devendra S. Kalonia.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

A brief description of T cloud as important parameters to measure PPI in solution is provided in the supporting material. Plot of T cloud for DVD-IgTM as a function of solution conditions is also elaborated. Excluded volume effect using modified Ross and Minton equation for mAb and DVD-IgTM is briefly discussed in the Supporting Information. (DOCX 146 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raut, A.S., Kalonia, D.S. Viscosity Analysis of Dual Variable Domain Immunoglobulin Protein Solutions: Role of Size, Electroviscous Effect and Protein-Protein Interactions. Pharm Res 33, 155–166 (2016). https://doi.org/10.1007/s11095-015-1772-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-015-1772-5

KEY WORDS

Navigation