Skip to main content

Advertisement

Log in

Glycyrrhetinic Acid-Mediated Polymeric Drug Delivery Targeting the Acidic Microenvironment of Hepatocellular Carcinoma

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

The major hurdle of current drug carrier against hepatocellular carcinoma (HCC) is the lack of specific and selective drug delivery to HCC. In this study, a novel glycyrrhetinic acid (GA) and poly(L-Histidine) (PHIS) mediated polymeric drug delivery system was developed to target HCC that have GA binding receptors and release its encapsulated anticancer drug in the acidic microenvironment of HCC.

Methods

Firstly, GA and PHIS were conjugated to form poly (ethylene glycol)-poly(lactic-co-glycolic acid) (GA-PEG-PHIS-PLGA, GA-PPP) micelles by grafting reaction between active terminal groups. Secondly, andrographolide (AGP) was encapsulated to GA-PPP to make AGP/GA-PPP using the solvent evaporation method. The pH-responsive property of AGP/GA-PPP micelles was validated by monitoring its stability and drug release behavior in different pH conditions. Furthermore, selective hepatocellular uptake of GA-PPP micelles in vitro, liver specific drug accumulation in vivo, as well as the enhanced antitumor effects of AGP/GA-PPP micelles confirmed the HCC targeting property of our novel drug delivery system.

Results

Average size of AGP/GA-PPP micelles increased significantly and the encapsulated AGP released faster in vitro at pH 5.0, while micelles keeping stable in pH 7.4. AGP/GA-PPP micelles were uptaken more efficiently by human Hep3B liver cells than that by human MDA-MB-231 breast cancer cells. GA-PPP micelles accumulated specifically in the liver and possessed long retention time in vivo. AGP/GA-PPP micelles significantly inhibited tumor growth and provided better therapeutic outcomes compared to free AGP and AGP/PEG-PLGA(AGP/PP) micelles without GA and PHIS decoration.

Conclusions

This novel GA-PPP polymeric carrier is promising for targeted treatment of HCC.

A novel dual-functional polymeric micellar system loading andrographolide (AGP) was formulated for HCC treatment to target to hepatoma tissue actively and release drugs in hepatoma cells selectively. The synergetic cytotoxicity in vitro and anticancer efficiency in vivo of micelles mediated by hepatoma-guide of glycyrrhetinic acid (GA) and pH-sensitive of Poly(L-histidine)(PHIS) moiety were demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

AFM:

Atomic force microscopy

AGP:

Andrographolide

ANOVA:

Analysis of variance

6-C/GA-PPP:

6-C loaded GA-PPP micelles

CLSM:

Confocal laser scanning microscopy

DCC:

N, N’-Dicyclohexylcarbodiimide

DCU:

N, N’-Dicyclohexylurea

DMEM:

Dulbecco’s modified eagle medium

EPR:

Enhanced permeability and retention

FBS:

Fetal bovine serum

FTIR:

Fourier transform infrared spectroscopy

GA:

Glycyrrhetinic acid

GA-PEG-NH2:

GA coupled-poly(ethylene glycol) with NH2 terminal

GA-PPP:

GA-PEG-PHIS-PLGA

HCC:

Hepatocellular carcinoma

H&E:

Haematoxylin/eosin

ICG:

Indocyanine green

MTT:

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide

NHS:

N-hydroxysuccinimide

NMR:

Nuclear magnetic resonance

PHIS:

Poly(l-histidine)

PI:

Propidium iodide

PLGA-PHIS:

Poly(lactic-co-glycolic acid)-block-poly(L-histidine)

PP:

PEG-PLGA

References

  1. German RR, Fink AK, Heron M, Stewart SL, Johnson CJ, Finch JL, et al. The accuracy of cancer mortality statistics based on death certificates in the United States. Cancer Epidemiol. 2011;35(2):126–31.

  2. Poelstra K, Prakash J, Beljaars L. Drug targeting to the diseased liver. J Control Release. 2012;161(2):188–97.

    Article  CAS  PubMed  Google Scholar 

  3. Gong J, Chen M, Zheng Y, Wang S, Wang Y. Polymeric micelles drug delivery system in oncology. J Control Release. 2012;159(3):312–23.

    Article  CAS  PubMed  Google Scholar 

  4. Kedar U, Phutane P, Shidhaye S, Kadam V. Advances in polymeric micelles for drug delivery and tumor targeting. Nanomedicine. 2010;6(6):714–29.

    Article  CAS  PubMed  Google Scholar 

  5. Jain RK, Stylianopoulos T. Delivering nanomedicine to solid tumors. Nat Rev Clin Oncol. 2010;7(11):653–64.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Zhong Y, Yang W, Sun H, Cheng R, Meng F, Deng C, et al. Ligand-directed reduction-sensitive shell-sheddable biodegradable micelles actively deliver doxorubicin into the nuclei of target cancer cells. Biomacromolecules. 2013;14(10):3723–30.

    Article  CAS  PubMed  Google Scholar 

  7. Asl MN, Hosseinzadeh H. Review of pharmacological effects of Glycyrrhiza sp. and its bioactive compounds. Phytother Res. 2008;22(6):709–24.

    Article  CAS  PubMed  Google Scholar 

  8. Negishi M, Irie A, Nagata N, Ichikawa A. Specific binding of glycyrrhetinic acid to the rat liver membrane. Biochim Biophys Acta. 1991;1066(1):77–82.

    Article  CAS  PubMed  Google Scholar 

  9. Tian Q, Zhang CN, Wang XH, Wang W, Huang W, Cha RT, et al. Glycyrrhetinic acid-modified chitosan/poly(ethylene glycol) nanoparticles for liver-targeted delivery. Biomaterials. 2010;31(17):4748–56.

  10. Tian Q, Wang X, Wang W, Zhang C, Liu Y, Yuan Z. Insight into glycyrrhetinic acid: the role of the hydroxyl group on liver targeting. Int J Pharm. 2010;400(1-2):153–7.

    Article  CAS  PubMed  Google Scholar 

  11. Mao SJ, Bi YQ, Jin H, Wei DP, He R, Hou SX. Preparation, characterization and uptake by primary cultured rat hepatocytes of liposomes surface-modified with glycyrrhetinic acid. Pharmazie. 2007;62(8):614–9.

    CAS  PubMed  Google Scholar 

  12. Huang W, Wang W, Wang P, Tian Q, Zhang C, Wang C, et al. Glycyrrhetinic acid-modified poly(ethylene glycol)-b-poly(gamma-benzyl l-glutamate) micelles for liver targeting therapy. Acta Biomater. 2010;6(10):3927–35.

    Article  CAS  PubMed  Google Scholar 

  13. Zhang C, Wang W, Liu T, Wu Y, Guo H, Wang P, et al. Doxorubicin-loaded glycyrrhetinic acid-modified alginate nanoparticles for liver tumor chemotherapy. Biomaterials. 2012;33(7):2187–96.

    Article  CAS  PubMed  Google Scholar 

  14. Qi WW, Yu H, Guo H, Lou J, Wang Z, Liu P, et al. Doxorubicin-loaded Glycyrrhetinic Acid-modified Recombinant Human Serum Albumin Nanoparticles for Targeting Liver Tumor Chemotherapy. Mol Pharm. 2015.

  15. Hyodo I, Mizuno M, Yamada G, Tsuji T. Distribution of asialoglycoprotein receptor in human hepatocellular carcinoma. Liver. 1993;13(2):80–5.

    Article  CAS  PubMed  Google Scholar 

  16. Gamucci O, Bertero A, Gagliardi M, Bardi G. Biomedical nanoparticles: overview of their surface immune-compatibility. Coatings. 2014;4(1):139–59.

    Article  CAS  Google Scholar 

  17. Qiu L, Li Z, Qiao M, Long M, Wang M, Zhang X, et al. Self-assembled pH-responsive hyaluronic acid–g-poly (l-histidine) copolymer micelles for targeted intracellular delivery of doxorubicin. Acta Biomater. 2014;10(5):2024–35.

    Article  CAS  PubMed  Google Scholar 

  18. Cheng R, Meng F, Deng C, Klok HA, Zhong Z. Dual and multi-stimuli responsive polymeric nanoparticles for programmed site-specific drug delivery. Biomaterials. 2013;34(14):3647–57.

    Article  CAS  PubMed  Google Scholar 

  19. Remant Bahadur KC, Thapa B, Xu P. pH and redox dual responsive nanoparticle for nuclear targeted drug delivery. Mol Pharm. 2012;9(9):2719–29.

    Article  Google Scholar 

  20. Guo X, Shi C, Wang J, Di S, Zhou S. pH-triggered intracellular release from actively targeting polymer micelles. Biomaterials. 2013.

  21. Hu X, Guan X, Li J, Pei Q, Liu M, Xie Z, et al. Hybrid polymer micelles capable of cRGD targeting and pH-triggered surface charge conversion for tumor selective accumulation and promoted uptake. Chem Commun (Camb). 2014;50(65):9188–91.

    Article  CAS  Google Scholar 

  22. Guan XG, Hu XL, Liu S, Huang YB, Jing XB, Xie ZG. Cyclic RGD targeting nanoparticles with pH sensitive polymer-drug conjugates for effective treatment of melanoma. Rsc Adv. 2014;4(98):55187–94.

    Article  CAS  Google Scholar 

  23. Wang Y, Wang H, Lv X, Liu C, Qi L, Song X, Yu A. Enhancement of All‐Trans Retinoic Acid‐Induced Differentiation by pH‐Sensitive Nanoparticles for Solid Tumor Cells. Macromol Biosci. 2013.

  24. Liu Z, Zhang N. pH-Sensitive polymeric micelles for programmable drug and gene delivery. Curr Pharm Des. 2012;18(23):3442–51.

    Article  CAS  PubMed  Google Scholar 

  25. Jiang X, Sha X, Xin H, Chen L, Gao X, Wang X, et al. Self-aggregated pegylated poly (trimethylene carbonate) nanoparticles decorated with c (RGDyK) peptide for targeted paclitaxel delivery to integrin-rich tumors. Biomaterials. 2011;32(35):9457–69.

    Article  CAS  PubMed  Google Scholar 

  26. Zeng X, Tao W, Mei L, Huang L, Tan C, Feng SS. Cholic acid-functionalized nanoparticles of star-shaped PLGA-vitamin E TPGS copolymer for docetaxel delivery to cervical cancer. Biomaterials. 2013.

  27. Yuan Y, Liu C, Qian J, Wang J, Zhang Y. Size-mediated cytotoxicity and apoptosis of hydroxyapatite nanoparticles in human hepatoma HepG2 cells. Biomaterials. 2010;31(4):730–40.

    Article  CAS  PubMed  Google Scholar 

  28. He YW, Wang HS, Zeng J, Fang XF, Chen HY, Du J, et al. Sodium butyrate inhibits interferon-gamma induced indoleamine 2, 3-dioxygenase expression via STAT1 in nasopharyngeal carcinoma cells. Life Sci. 2013;93(15):509–15.

    Article  CAS  PubMed  Google Scholar 

  29. Ying M, Mostafa S, Jun S. Biodistribution of indocyanine green-loaded nanoparticles with surface modifications of PEG and folic acid. Int J Pharm. 2012;436(1-2):25–31.

    Article  Google Scholar 

  30. Zheng C, Zheng M, Gong P, Jia D, Zhang P, Shi B, et al. Indocyanine green-loaded biodegradable tumor targeting nanoprobes for in vitro and in vivo imaging. Biomaterials. 2012;33(22):5603–9.

    Article  CAS  PubMed  Google Scholar 

  31. Bahmani B, Lytle CY, Walker AM, Gupta S, Vullev VI, Anvari B. Effects of nanoencapsulation and PEGylation on biodistribution of indocyanine green in healthy mice: quantitative fluorescence imaging and analysis of organs. Int J Nanomedicine. 2013;8:1609–20.

    PubMed Central  PubMed  Google Scholar 

  32. Wang Y, Chen H, Liu Y, Wu J, Zhou P, Li R, et al. pH-sensitive pullulan-based nanoparticle carrier of methotrexate and combretastatin A4 for the combination therapy against hepatocellular carcinoma. Biomaterials. 2013;34(29):7181–90.

    Article  CAS  PubMed  Google Scholar 

  33. Fang X, Dong W, Thornton C, Willett KL. Benzo [a] pyrene effects on glycine N-methyltransferase mRNA expression and enzyme activity in Fundulus heteroclitus embryos. Aquat Toxicol. 2010;98(2):130–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Wu F, Xu T, Liu C, Chen C, Song X, Zheng Y, He G. Glycyrrhetinic acid-poly (ethylene glycol)-glycyrrhetinic acid tri-block conjugates based self-assembled micelles for hepatic targeted delivery of poorly water soluble drug. Sci World J. 2013.

  35. Huang W, Wang W, Wang P, Tian Q, Zhang C, Wang C, et al. Glycyrrhetinic acid-modified poly (ethylene glycol)–b-poly (γ-benzyl l-glutamate) micelles for liver targeting therapy. Acta Biomater. 2010;6(10):3927–35.

    Article  CAS  PubMed  Google Scholar 

  36. Wang JF, Yin C, Tang GP, Lin XF, Wu Q. Synthesis, characterization, and in vitro evaluation of two synergistic anticancer drug-containing hepatoma-targeting micelles formed from amphiphilic random copolymer. Biomater Sci-Uk. 2013;1(7):774–82.

    Article  CAS  Google Scholar 

  37. Wu H, Zhu L, Torchilin VP. pH-sensitive poly (histidine)-PEG/DSPE-PEG co-polymer micelles for cytosolic drug delivery. Biomaterials. 2013;34(4):1213–22.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. He G, He Z, Zheng X, Li J, Liu C, Song X, et al. Synthesis, characterization and in vitro evaluation of self-assembled poly (ethylene glycol)-glycyrrhetinic acid conjugates. Lett Org Chem. 2012;9(3):202–10.

    Article  CAS  Google Scholar 

  39. Stevanović M, Radulović A, Jordović B, Uskoković D. Poly (DL-lactide-co-glycolide) nanospheres for the sustained release of folic acid. J Biomed Nanotechnol. 2008;4(3):349–58.

    Article  Google Scholar 

  40. Hartland A, Lead JR, Slaveykova VI, O’Carroll D, Valsami-Jones E. The environmental significance of natural nanoparticles. Nat Educ Knowl. 2013;4(8):7.

    Google Scholar 

  41. Yin H, Lee ES, Kim D, Lee KH, Oh KT, Bae YH. Physicochemical characteristics of pH-sensitive poly (l-Histidine)-b-poly (ethylene glycol)/poly (l-Lactide)-b-poly (ethylene glycol) mixed micelles. J Control Release. 2008;126(2):130–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Shackelford C, Long G, Wolf J, Okerberg C, Herbert R. Qualitative and quantitative analysis of nonneoplastic lesions in toxicology studies. Toxicol Pathol. 2002;30(1):93–6.

    Article  PubMed  Google Scholar 

  43. Gaumet M, Vargas A, Gurny R, Delie F. Nanoparticles for drug delivery: the need for precision in reporting particle size parameters. Eur J Pharm Biopharm. 2008;69(1):1–9.

    Article  CAS  PubMed  Google Scholar 

  44. Kim GM, Bae YH, Jo WH. pH‐induced Micelle Formation of Poly (histidine‐co‐phenylalanine)‐block‐Poly (ethylene glycol) in Aqueous Media. Macromol Biosci. 2005;5(11):1118–24.

    Article  CAS  PubMed  Google Scholar 

  45. Smith JS, Xu Z, Byrnes AP. A quantitative assay for measuring clearance of adenovirus vectors by Kupffer cells. J Virol Methods. 2008;147(1):54–60.

    Article  CAS  PubMed  Google Scholar 

  46. Tian Q, Wang XH, Wang W, Zhang CN, Wang P, Yuan Z. Self-assembly and liver targeting of sulfated chitosan nanoparticles functionalized with glycyrrhetinic acid. Nanomedicine: Nanotechnol, Biol Med. 2012;8(6):870–9.

    Article  CAS  Google Scholar 

  47. Banerjee T, Mitra S, Kumar Singh A, Kumar Sharma R, Maitra A. Preparation, characterization and biodistribution of ultrafine chitosan nanoparticles. Int J Pharm. 2002;243(1):93–105.

    Article  CAS  PubMed  Google Scholar 

  48. Negishi M, Irie A, Nagata N, Ichikawa A. Specific binding of glycyrrhetinic acid to the rat liver membrane. Biochim Biophys Acta Biomembr. 1991;1066(1):77–82.

    Article  CAS  Google Scholar 

  49. Zhang L, Yang M, Wang Q, Li Y, Guo R, Jiang X, et al. 10-Hydroxycamptothecin loaded nanoparticles: preparation and antitumor activity in mice. J Control Release : Off J Control Release Soc. 2007;119(2):153–62.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

This study was supported by the Macao Science and Technology Development Fund (062/2013/A2), and the Research Fund of the University of Macau (MRG004/CMW/2014/ICMS, MYRG 208 (Y3-L4)-ICMS11-WYT, MYRG2014-00051-ICMS-QRCM, MYRG2014-00033-ICMS-QRCM), and the fund from National Natural Science Foundation of China (81403120, 21101080).

The authors declare no competing financial interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yitao Wang or Meiwan Chen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 205 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Zhang, M., Ji, J. et al. Glycyrrhetinic Acid-Mediated Polymeric Drug Delivery Targeting the Acidic Microenvironment of Hepatocellular Carcinoma. Pharm Res 32, 3376–3390 (2015). https://doi.org/10.1007/s11095-015-1714-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-015-1714-2

KEY WORDS

Navigation