Skip to main content

Advertisement

Log in

Antibody-Drug Conjugates: Design, Formulation and Physicochemical Stability

  • Expert Review
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

The convergence of advanced understanding of biology with chemistry has led to a resurgence in the development of antibody-drug conjugates (ADCs), especially with two recent product approvals. Design and development of ADCs requires the synergistic combination of the monoclonal antibody, the linker and the payload. Advances in antibody science has enabled identification and generation of high affinity, highly selective, humanized or human antibodies for a given target. Novel linker technologies have been synthesized and highly potent cytotoxic drug payloads have been created. As the first generation of ADCs utilizing lysine and cysteine chemistries moves through the clinic and into commercialization, second generation ADCs involving site specific conjugation technologies are being evaluated and tested. The latter aim to be better characterized and controlled, with wider therapeutic indices as well as improved pharmacokinetic-pharmacodynamic (PK-PD) profiles. ADCs offer some interesting physicochemical properties, due to conjugation itself, and to the (often) hydrophobic payloads that must be considered during their CMC development. New analytical methodologies are required for the ADCs, supplementing those used for the antibody itself. Regulatory filings will be a combination of small molecule and biologics. The regulators have put forth some broad principles but this landscape is still evolving.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

AcBut:

4-(4′-acetylphenoxy) butanoic acid

AcPAc:

3-acetylphenyl acetic acid

ADA:

Anti-drug antibody

ADC:

Antibody-drug conjugate

ADCC:

Antibody-dependent cell-mediated cytotoxicity

AF:

Auristatin F

AUC:

Area under the curve

bac:

Bromoacetamido moiety

BLA:

Biologics License Application

C2-keto-Gal:

2-acetonyl-2-deoxy-galactose

Calich:

N-acetyl gamma calicheamicin

CD:

Circular dichroism spectroscopy

CDC:

Complement-dependent cytotoxicity

CHO:

Chinese hamster ovary cells

DAR:

Drug antibody ratio

DM:

Disulfide-containing maytansinoids

DMA:

Dimethyl acid linker

DMH:

Dimethyl hydrazide linker precursor

Doe:

Dolaphenine

DP:

Drug product

DS:

Drug substance

DSC:

Differential scanning calorimetry

DSI:

Drug substance intermediate

DTNB:

Dithionitrobenzoate

DTT:

Dithiothreitol

ELISA:

Enzyme-linked immunosorbent assay

ESI-MS:

Electrospray ionization mass spectroscopy

EVA:

Ethylvinyl acetate

Fab:

Fragment antigen-binding

FcRn:

Neonatal Fc receptor for IgG

FcγR:

Fc gamma receptor for IgG

FTIR:

Fourier transform infrared spectroscopy

GalNAz:

N-acetyl-azido-galactosamine

GlcNAc:

N-acetyl-D-glucosamine

HAHA:

Human antibody-human antibody immune response

HC:

Heavy chain of IgG

HDPE:

High density polyethylene

HIC:

Hydrophobic interaction chromatography

HIPS:

Hydrazine-iso-Pictet-Spengler ligation

huFcγR:

Human Fc gamma receptor for IgG

IND:

Investigational New Drug

IV:

Intravenous

LC:

Light chain of IgG

LDPE:

Low density polyethylene

mAb:

Monoclonal antibody

MALDI-TOF:

Matrix Assisted Laser Desorption/Ionization Time of Flight

mc:

Maleimidocaproyl linker

MCC:

[N-maleimidomethyl]cyclohexane-1-carboxylate

MMAD:

Monomethyl auristatin D

MMAE:

Monomethyl auristatin E

MMAF:

Monomethyl auristatin F

mTG:

Microbial enzyme transglutaminase

MTX:

Methotrexate

nAF:

Oxyamine-auristatin F containing a short polyethylene glycol spacer

NEM:

N-ethylmaleimide

nnAA:

Non-native amino acids

OBP:

Office of Biotechnology Products

ONDQA:

Office of New Drug Quality Assessment

pabc:

p-aminobenzyloxycarbonyl

pAcPhe:

p-acetylphenylalanine

PBD:

Pyrrolobenzodiazepine

PD:

Pharmacodynamics

PEG:

Polyethylene glycol

PETG:

Polyethylene terephthalate glycol

PK-PD:

Pharmacokinetic-pharmacodynamic

PTFE:

Polytetrafluoroethylene

RP-HPLC:

Reverse phase high performance liquid chromatography

scFv:

Single-chain variable fragment

SEC-HPLC:

Size exclusion column high performance liquid chromatography

SMCC:

Succinimidyl-4-(N-maleimidomethyl)cyclohexane-1-carboxylate

SPDP:

N-succinimidyl-3-(2-pyridyldithio)propionate

TCEP:

Tris(2-carboxyethyl)phosphine

TDC:

THIOMAB drug conjugate

T-DM1:

Ado-trastuzumab emtansine (Kadcyla)

UF/DF:

Ultrafiltration/Diafiltration

vc:

Valine-citrulline cleavable linker

References

  1. Scott AM, Wolchok JD, Old LJ. Antibody therapy of cancer. Nat Rev Cancer. 2012;12(4):278–87.

    Article  CAS  PubMed  Google Scholar 

  2. Sapra P, Shor B. Monoclonal antibody-based therapies in cancer: advances and challenges. Pharmacol Ther. 2013;138(3):452–69.

    Article  CAS  PubMed  Google Scholar 

  3. Glennie MJ, van de Winkel JG. Renaissance of cancer therapeutic antibodies. Drug Discov Today. 2003;8(11):503–10.

    Article  CAS  PubMed  Google Scholar 

  4. Wu AM, Senter PD. Arming antibodies: prospects and challenges for immunoconjugates. Nat Biotechnol. 2005;23(9):1137–46.

    Article  CAS  PubMed  Google Scholar 

  5. de Claro RA, McGinn K, Kwitkowski V, Bullock J, Khandelwal A, Habtemariam B, et al. U.S. Food and Drug Administration approval summary: brentuximab vedotin for the treatment of relapsed Hodgkin lymphoma or relapsed systemic anaplastic large-cell lymphoma. Clin Cancer Res Off J Am Assoc Cancer Res. 2012;18(21):5845–9.

    Article  CAS  Google Scholar 

  6. FDA approves new treatment for late-stage breast cancer. [press release]. Washington, DC USA, 2/26/2013 2013.

  7. Jain N, Smith SW, Ghone S, Tomczuk B. Current ADC linker chemistry. Pharm Res. 2015. doi:10.1007/s11095-015-1657-7.

  8. McCombs JR, Owen SC. Antibody drug conjugates: design and selection of linker, payload and conjugation chemistry. AAPS J. 2015;17(2):339–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Perez HL, Cardarelli PM, Deshpande S, Gangwar S, Schroeder GM, Vite GD, et al. Antibody-drug conjugates: current status and future directions. Drug Discov Today. 2014;19(7):869–81.

    Article  CAS  PubMed  Google Scholar 

  10. Govindan SV, Goldenberg DM. Designing immunoconjugates for cancer therapy. Expert Opin Biol Ther. 2012;12(7):873–90.

    Article  CAS  PubMed  Google Scholar 

  11. Janthur WD, Cantoni N, Mamot C. Drug conjugates such as Antibody Drug Conjugates (ADCs), immunotoxins and immunoliposomes challenge daily clinical practice. Int J Mol Sci. 2012;13(12):16020–45.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Yordanov G. Advanced strategies for drug delivery in nanomedicine. Progr Colloid Interf Sci. 2014;4:3–36. Colloid and Interface Chemistry for Nanotechnology.

    CAS  Google Scholar 

  13. Arias JL. Drug delivery strategies in targeting cancer: current concepts and future developments. Curr Drug Targets. 2011;12(8):1094–5.

    Article  CAS  PubMed  Google Scholar 

  14. Basile L, Pignatello R, Passirani C. Active targeting strategies for anticancer drug nanocarriers. Curr Drug Deliv. 2012;9(3):255–68.

    Article  CAS  PubMed  Google Scholar 

  15. Alexander-Bryant AA, Vanden Berg-Foels WS, Wen X. Bioengineering strategies for designing targeted cancer therapies. Adv Cancer Res. 2013;118:1–59.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Panowksi S, Bhakta S, Raab H, Polakis P, Junutula JR. Site-specific antibody drug conjugates for cancer therapy. mAbs. 2014;6(1):34–45.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Sievers EL, Linenberger M. Mylotarg: antibody-targeted chemotherapy comes of age. Curr Opin Oncol. 2001;13(6):522–7.

    Article  CAS  PubMed  Google Scholar 

  18. Ravandi F. Gemtuzumab ozogamicin: one size does not fit all–the case for personalized therapy. J Clin Oncol Off J Am Soc Clin Oncol. 2011;29(4):349–51.

    Article  Google Scholar 

  19. Goldmacher VS, Kovtun YV. Antibody-drug conjugates: using monoclonal antibodies for delivery of cytotoxic payloads to cancer cells. Ther Deliv. 2011;2(3):397–416.

    Article  CAS  PubMed  Google Scholar 

  20. Adair JR, Howard PW, Hartley JA, Williams DG, Chester KA. Antibody-drug conjugates - a perfect synergy. Expert Opin Biol Ther. 2012;12(9):1191–206.

    Article  CAS  PubMed  Google Scholar 

  21. Adcetris. Prescribing information2013 February 2014. Available from: http://www.ich.org/prodcts/guidelines/quality/article/quality-guidelines.html.

  22. Kadcyla. Prescribing information2013 February 2014. Available from: http://www.gene.com/download/pdf/kadcyla_prescribing.pdf.

  23. Herceptin. Prescribing information2014 May 2014. Available from: http://www.gene.com/download/pdf/herceptin_prescribing.pdf.

  24. Clark M. Antibody humanization: a case of the ‘Emperor’s new clothes’? Immunol Today. 2000;21(8):397–402.

    Article  CAS  PubMed  Google Scholar 

  25. Ritchie M, Tchistiakova L, Scott N. Implications of receptor-mediated endocytosis and intracellular trafficking dynamics in the development of antibody drug conjugates. mAbs. 2013;5(1):13–21.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Adams GP, Weiner LM. Monoclonal antibody therapy of cancer. Nat Biotechnol. 2005;23(9):1147–57.

    Article  CAS  PubMed  Google Scholar 

  27. Schmidt MM, Wittrup KD. A modeling analysis of the effects of molecular size and binding affinity on tumor targeting. Mol Cancer Ther. 2009;8(10):2861–71.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Salfeld JG. Isotype selection in antibody engineering. Nat Biotechnol. 2007;25(12):1369–72.

    Article  CAS  PubMed  Google Scholar 

  29. Adcetris. Adcetris Assessment report EMA/702390/2012 Available from: www.ema.europa.eu.

  30. Kadcyla. Kadcyla Assessment report EMA/749228/2013 Available from: www.emea.europa.eu.

  31. McDonagh CF, Kim KM, Turcott E, Brown LL, Westendorf L, Feist T, et al. Engineered anti-CD70 antibody-drug conjugate with increased therapeutic index. Mol Cancer Ther. 2008;7(9):2913–23.

    Article  CAS  PubMed  Google Scholar 

  32. Jefferis R. Isotype and glycoform selection for antibody therapeutics. Arch Biochem Biophys. 2012;526(2):159–66.

    Article  CAS  PubMed  Google Scholar 

  33. Jefferis R. Antibody therapeutics: isotype and glycoform selection. Expert Opin Biol Ther. 2007;7(9):1401–13.

    Article  CAS  PubMed  Google Scholar 

  34. Ratner M. Genentech’s glyco-engineered antibody to succeed Rituxan. Nat Biotechnol. 2014;32(1):6–7.

    Article  CAS  PubMed  Google Scholar 

  35. Putnam WS, Prabhu S, Zheng Y, Subramanyam M, Wang YM. Pharmacokinetic, pharmacodynamic and immunogenicity comparability assessment strategies for monoclonal antibodies. Trends Biotechnol. 2010;28(10):509–16.

    Article  CAS  PubMed  Google Scholar 

  36. Jones AJ, Papac DI, Chin EH, Keck R, Baughman SA, Lin YS, et al. Selective clearance of glycoforms of a complex glycoprotein pharmaceutical caused by terminal N-acetylglucosamine is similar in humans and cynomolgus monkeys. Glycobiology. 2007;17(5):529–40.

    Article  CAS  PubMed  Google Scholar 

  37. Alessandri L, Ouellette D, Acquah A, Rieser M, Leblond D, Saltarelli M, et al. Increased serum clearance of oligomannose species present on a human IgG1 molecule. mAbs. 2012;4(4):509–20.

    Article  PubMed Central  PubMed  Google Scholar 

  38. Goetze AM, Liu YD, Zhang Z, Shah B, Lee E, Bondarenko PV, et al. High-mannose glycans on the Fc region of therapeutic IgG antibodies increase serum clearance in humans. Glycobiology. 2011;21(7):949–59.

    Article  CAS  PubMed  Google Scholar 

  39. Holliger P, Hudson PJ. Engineered antibody fragments and the rise of single domains. Nat Biotechnol. 2005;23(9):1126–36.

    Article  CAS  PubMed  Google Scholar 

  40. Liu H, Chumsae C, Gaza-Bulseco G, Hurkmans K, Radziejewski CH. Ranking the susceptibility of disulfide bonds in human IgG1 antibodies by reduction, differential alkylation, and LC-MS analysis. Anal Chem. 2010;82(12):5219–26.

    Article  CAS  PubMed  Google Scholar 

  41. Liu H, May K. Disulfide bond structures of IgG molecules: structural variations, chemical modifications and possible impacts to stability and biological function. mAbs. 2012;4(1):17–23.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Hamblett KJ, Senter PD, Chace DF, Sun MM, Lenox J, Cerveny CG, et al. Effects of drug loading on the antitumor activity of a monoclonal antibody drug conjugate. Clin Cancer Res Off J Am Assoc Cancer Res. 2004;10(20):7063–70.

    Article  CAS  Google Scholar 

  43. Beckley NS, Lazzareschi KP, Chih HW, Sharma VK, Flores HL. Investigation into temperature-induced aggregation of an antibody drug conjugate. Bioconjug Chem. 2013;24(10):1674–83.

    Article  CAS  PubMed  Google Scholar 

  44. Guo J, Kumar S, Prashad A, Starkey J, Singh SK. Assessment of physical stability of an antibody drug conjugate by higher order structure analysis: impact of thiol- maleimide chemistry. Pharm Res. 2014;31(7):1710–23.

    Article  CAS  PubMed  Google Scholar 

  45. Sun MM, Beam KS, Cerveny CG, Hamblett KJ, Blackmore RS, Torgov MY, et al. Reduction-alkylation strategies for the modification of specific monoclonal antibody disulfides. Bioconjug Chem. 2005;16(5):1282–90.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Senter PD, Sievers EL. The discovery and development of brentuximab vedotin for use in relapsed Hodgkin lymphoma and systemic anaplastic large cell lymphoma. Nat Biotechnol. 2012;30(7):631–7.

    Article  CAS  PubMed  Google Scholar 

  47. Junutula JR, Flagella KM, Graham RA, Parsons KL, Ha E, Raab H, et al. Engineered thio-trastuzumab-DM1 conjugate with an improved therapeutic index to target human epidermal growth factor receptor 2-positive breast cancer. Clin Cancer Res Off J Am Assoc Cancer Res. 2010;16(19):4769–78.

    Article  CAS  Google Scholar 

  48. Wakankar AA, Feeney MB, Rivera J, Chen Y, Kim M, Sharma VK, et al. Physicochemical stability of the antibody-drug conjugate Trastuzumab-DM1: changes due to modification and conjugation processes. Bioconjug Chem. 2010;21(9):1588–95.

    Article  CAS  PubMed  Google Scholar 

  49. Wang L, Amphlett G, Blattler WA, Lambert JM, Zhang W. Structural characterization of the maytansinoid-monoclonal antibody immunoconjugate, huN901-DM1, by mass spectrometry. Prot Sci Publ Prot Soc. 2005;14(9):2436–46.

    Article  CAS  Google Scholar 

  50. Bender B, Leipold DD, Xu K, Shen BQ, Tibbitts J, Friberg LE. A mechanistic pharmacokinetic model elucidating the disposition of trastuzumab emtansine (T-DM1), an Antibody-Drug Conjugate (ADC) for treatment of metastatic breast cancer. AAPS J. 2014;16(5):994–1008.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Mylotarg. Prescribing information 2010 [cited 2014 March]. Available from: http://www.drugs.com/pro/mylotarg.html.

  52. DiJoseph JF, Armellino DC, Boghaert ER, Khandke K, Dougher MM, Sridharan L, et al. Antibody-targeted chemotherapy with CMC-544: a CD22-targeted immunoconjugate of calicheamicin for the treatment of B-lymphoid malignancies. Blood. 2004;103(5):1807–14.

    Article  CAS  PubMed  Google Scholar 

  53. McDonagh CF, Turcott E, Westendorf L, Webster JB, Alley SC, Kim K, et al. Engineered antibody-drug conjugates with defined sites and stoichiometries of drug attachment. Prot Eng Des Sel PEDS. 2006;19(7):299–307.

    Article  CAS  Google Scholar 

  54. Klinguer-Hamour C, Strop P, Shah DK, Ducry L, Xu A, Beck A. World antibody-drug conjugate summit, October 15–16, 2013, San Francisco, CA. mAbs. 2014;6(1):18–29.

    Article  PubMed Central  PubMed  Google Scholar 

  55. Miao D, editor Panel screenings, powerful modular ADC technology platforms from target to IND. IBC Bioconjugates; 2013 June 26–28; Coronado, CA.

  56. Junutula JR, Raab H, Clark S, Bhakta S, Leipold DD, Weir S, et al. Site-specific conjugation of a cytotoxic drug to an antibody improves the therapeutic index. Nat Biotechnol. 2008;26(8):925–32.

    Article  CAS  PubMed  Google Scholar 

  57. Boswell CA, Mundo EE, Zhang C, Bumbaca D, Valle NR, Kozak KR, et al. Impact of drug conjugation on pharmacokinetics and tissue distribution of anti-STEAP1 antibody-drug conjugates in rats. Bioconjug Chem. 2011;22(10):1994–2004.

    Article  CAS  PubMed  Google Scholar 

  58. Shen BQ, Xu K, Liu L, Raab H, Bhakta S, Kenrick M, et al. Conjugation site modulates the in vivo stability and therapeutic activity of antibody-drug conjugates. Nat Biotechnol. 2012;30(2):184–9.

    Article  CAS  PubMed  Google Scholar 

  59. Damle NK. Antibody-drug conjugates ace the tolerability test. Nat Biotechnol. 2008;26(8):884–5.

    Article  CAS  PubMed  Google Scholar 

  60. Alley SC, Benjamin DR, Jeffrey SC, Okeley NM, Meyer DL, Sanderson RJ, et al. Contribution of linker stability to the activities of anticancer immunoconjugates. Bioconjug Chem. 2008;19(3):759–65.

    Article  CAS  PubMed  Google Scholar 

  61. Voynov V, Chennamsetty N, Kayser V, Wallny HJ, Helk B, Trout BL. Design and application of antibody cysteine variants. Bioconjug Chem. 2010;21(2):385–92.

    Article  CAS  PubMed  Google Scholar 

  62. Chennamsetty N, Voynov V, Kayser V, Helk B, Trout BL. Prediction of aggregation prone regions of therapeutic proteins. J Phys Chem B. 2010;114(19):6614–24.

    Article  CAS  PubMed  Google Scholar 

  63. Gomez N, Ouyang J, Nguyen MD, Vinson AR, Lin AA, Yuk IH. Effect of temperature, pH, dissolved oxygen, and hydrolysate on the formation of triple light chain antibodies in cell culture. Biotechnol Prog. 2010;26(5):1438–45.

    Article  CAS  PubMed  Google Scholar 

  64. Gomez N, Vinson AR, Ouyang J, Nguyen MD, Chen XN, Sharma VK, et al. Triple light chain antibodies: factors that influence its formation in cell culture. Biotechnol Bioeng. 2010;105(4):748–60.

    CAS  PubMed  Google Scholar 

  65. Strop P, Liu SH, Dorywalska M, Delaria K, Dushin RG, Tran TT, et al. Location matters: site of conjugation modulates stability and pharmacokinetics of antibody drug conjugates. Chem Biol. 2013;20(2):161–7.

    Article  CAS  PubMed  Google Scholar 

  66. Jeger S, Zimmermann K, Blanc A, Grunberg J, Honer M, Hunziker P, et al. Site-specific and stoichiometric modification of antibodies by bacterial transglutaminase. Angew Chem. 2010;49(51):9995–7.

    Article  CAS  Google Scholar 

  67. Ohtsuka T, Sawa A, Kawabata R, Nio N, Motoki M. Substrate specificities of microbial transglutaminase for primary amines. J Agric Food Chem. 2000;48(12):6230–3.

    Article  CAS  PubMed  Google Scholar 

  68. Farias SE, Strop P, Delaria K, Galindo Casas M, Dorywalska M, Shelton DL, et al. Mass spectrometric characterization of transglutaminase based site-specific antibody-drug conjugates. Bioconjug Chem. 2014;25(2):240–50.

    Article  CAS  PubMed  Google Scholar 

  69. Behrens CR, Liu B. Methods for site-specific drug conjugation to antibodies. mAbs. 2014;6(1):46–53.

    Article  PubMed Central  PubMed  Google Scholar 

  70. Axup JY, Bajjuri KM, Ritland M, Hutchins BM, Kim CH, Kazane SA, et al. Synthesis of site-specific antibody-drug conjugates using unnatural amino acids. Proc Natl Acad Sci U S A. 2012;109(40):16101–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. Tian F, Lu Y, Manibusan A, Sellers A, Tran H, Sun Y, et al. A general approach to site-specific antibody drug conjugates. Proc Natl Acad Sci U S A. 2014;111(5):1766–71.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Sutro. Sutro Biopharma Technology 2013 [cited 2014 08Feb]. Available from: http://www.sutrobio.com/tech/index.html.

  73. Synaffix connecting molecules 2014 [cited 2014 07Feb]. Available from: www.synaffix.com.

  74. van Hest JC, van Delft FL. Protein modification by strain-promoted alkyne-azide cycloaddition. Chembiochem Eur J Chem Biol. 2011;12(9):1309–12.

    Article  CAS  Google Scholar 

  75. Boeggeman E, Ramakrishnan B, Pasek M, Manzoni M, Puri A, Loomis KH, et al. Site specific conjugation of fluoroprobes to the remodeled Fc N-glycans of monoclonal antibodies using mutant glycosyltransferases: application for cell surface antigen detection. Bioconjug Chem. 2009;20(6):1228–36.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. Starling JJ, Maciak RS, Hinson NA, Nichols CL, Briggs SL, Laguzza BC, et al. In vivo antitumor activity of a panel of four monoclonal antibody-vinca alkaloid immunoconjugates which bind to three distinct epitopes of carcinoembryonic antigen. Bioconjug Chem. 1992;3(4):315–22.

    Article  CAS  PubMed  Google Scholar 

  77. Trail PA, Willner D, Lasch SJ, Henderson AJ, Hofstead S, Casazza AM, et al. Cure of xenografted human carcinomas by BR96-doxorubicin immunoconjugates. Science. 1993;261(5118):212–5.

    Article  CAS  PubMed  Google Scholar 

  78. Safavy A, Georg GI, Vander Velde D, Raisch KP, Safavy K, Carpenter M, et al. Site-specifically traced drug release and biodistribution of a paclitaxel-antibody conjugate toward improvement of the linker structure. Bioconjug Chem. 2004;15(6):1264–74.

    Article  CAS  PubMed  Google Scholar 

  79. Flygare JA, Pillow TH, Aristoff P. Antibody-drug conjugates for the treatment of cancer. Chem Biol Drug Des. 2013;81(1):113–21.

    Article  CAS  PubMed  Google Scholar 

  80. Gerber HP, Koehn FE, Abraham RT. The antibody-drug conjugate: an enabling modality for natural product-based cancer therapeutics. Nat Prod Rep. 2013;30(5):625–39.

    Article  CAS  PubMed  Google Scholar 

  81. Hinman LM, Hamann PR, Wallace R, Menendez AT, Durr FE, Upeslacis J. Preparation and characterization of monoclonal antibody conjugates of the calicheamicins: a novel and potent family of antitumor antibiotics. Cancer Res. 1993;53(14):3336–42.

    CAS  PubMed  Google Scholar 

  82. Dosio F, Brusa P, Cattel L. Immunotoxins and anticancer drug conjugate assemblies: the role of the linkage between components. Toxins. 2011;3(7):848–83.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  83. Smith AL, Nicolaou KC. The enediyne antibiotics. J Med Chem. 1996;39(11):2103–17.

    Article  CAS  PubMed  Google Scholar 

  84. Hamann PR, Hinman LM, Beyer CF, Lindh D, Upeslacis J, Flowers DA, et al. An anti-CD33 antibody-calicheamicin conjugate for treatment of acute myeloid leukemia. Choice of linker. Bioconjug Chem. 2002;13(1):40–6.

    Article  CAS  PubMed  Google Scholar 

  85. Bai RL, Pettit GR, Hamel E. Structure-activity studies with chiral isomers and with segments of the antimitotic marine peptide dolastatin 10. Biochem Pharmacol. 1990;40(8):1859–64.

    Article  CAS  PubMed  Google Scholar 

  86. Pettit GR. The dolastatins. Progress in the chemistry of organic natural products. Prog Chem Org Nat Prod. 1997;70:1–19.

  87. Fennell BJ, Carolan S, Pettit GR, Bell A. Effects of the antimitotic natural product dolastatin 10, and related peptides, on the human malarial parasite Plasmodium falciparum. J Antimicrob Chemother. 2003;51(4):833–41.

    Article  CAS  PubMed  Google Scholar 

  88. Pettit RK, Pettit GR, Hazen KC. Specific activities of dolastatin 10 and peptide derivatives against Cryptococcus neoformans. Antimicrob Agents Chemother. 1998;42(11):2961–5.

    PubMed Central  CAS  PubMed  Google Scholar 

  89. Bai R, Roach MC, Jayaram SK, Barkoczy J, Pettit GR, Luduena RF, et al. Differential effects of active isomers, segments, and analogs of dolastatin 10 on ligand interactions with tubulin. Correlation with cytotoxicity. Biochem Pharmacol. 1993;45(7):1503–15.

    Article  CAS  PubMed  Google Scholar 

  90. Doronina SO, Toki BE, Torgov MY, Mendelsohn BA, Cerveny CG, Chace DF, et al. Development of potent monoclonal antibody auristatin conjugates for cancer therapy. Nat Biotechnol. 2003;21(7):778–84.

    Article  CAS  PubMed  Google Scholar 

  91. Seattle-Genetics. 2014.

  92. Kupchan SM, Komoda Y, Court WA, Thomas GJ, Smith RM, Karim A, et al. Maytansine, a novel antileukemic ansa macrolide from Maytenus ovatus. J Am Chem Soc. 1972;94(4):1354–6.

    Article  CAS  PubMed  Google Scholar 

  93. Higashide E, Asai M, Ootsu K, Tanida S, Kozai Y, Hasegawa T, et al. Ansamitocin, a group of novel maytansinoid antibiotics with antitumour properties from Nocardia. Nature. 1977;270(5639):721–2.

    Article  CAS  PubMed  Google Scholar 

  94. Remillard S, Rebhun LI, Howie GA, Kupchan SM. Antimitotic activity of the potent tumor inhibitor maytansine. Science. 1975;189(4207):1002–5.

    Article  CAS  PubMed  Google Scholar 

  95. Widdison WC, Wilhelm SD, Cavanagh EE, Whiteman KR, Leece BA, Kovtun Y, et al. Semisynthetic maytansine analogues for the targeted treatment of cancer. J Med Chem. 2006;49(14):4392–408.

    Article  CAS  PubMed  Google Scholar 

  96. Kupchan SM, Sneden AT, Branfman AR, Howie GA, Rebhun LI, McIvor WE, et al. Structural requirements for antileukemic activity among the naturally occurring and semisynthetic maytansinoids. J Med Chem. 1978;21(1):31–7.

    Article  CAS  PubMed  Google Scholar 

  97. Chari RV, Martell BA, Gross JL, Cook SB, Shah SA, Blattler WA, et al. Immunoconjugates containing novel maytansinoids: promising anticancer drugs. Cancer Res. 1992;52(1):127–31.

    CAS  PubMed  Google Scholar 

  98. ImmunoGen, Inc. Announces activity reported with SAR3419 plus rituxan in difficult-to-treat patient population [press release]. December 9, 2013 2013.

  99. Takahashi I, Takahashi K, Ichimura M, Morimoto M, Asano K, Kawamoto I, et al. Duocarmycin A, a new antitumor antibiotic from Streptomyces. J Antibiot. 1988;41(12):1915–7.

    Article  CAS  PubMed  Google Scholar 

  100. Boger DL. The duocarmycins: synthetic and mechanistic studies. Acc Chem Res. 1995;28(1):20–9.

    Article  CAS  Google Scholar 

  101. Wolfe AL, Duncan KK, Lajiness JP, Zhu K, Duerfeldt AS, Boger DL. A fundamental relationship between hydrophobic properties and biological activity for the duocarmycin class of DNA-alkylating antitumor drugs: hydrophobic-binding-driven bonding. J Med Chem. 2013;56(17):6845–57.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  102. Thevanayagam L, Bell A, Chakraborty I, Sufi B, Gangwar S, Zang A, et al. Novel detection of DNA-alkylated adducts of antibody-drug conjugates with potentially unique preclinical and biomarker applications. Bioanalysis. 2013;5(9):1073–81.

    Article  CAS  PubMed  Google Scholar 

  103. Clinicaltrials.gov. Study of MDX-1203 in subjects with advanced/recurrent clear cell renal Cell Carcinoma (ccRCC) or relapsed/refractory B-cell non-Hodgkin’s lymphoma (B-NHL) 2014 [March 26, 2014]. Clinical trials database]. Available from: http://clinicaltrials.gov/ct2/show/NCT00944905?term=mdx-1203&rank=1.

  104. Sutherland MSK, Walter RB, Jeffrey SC, Burke PJ, Yu C, Kostner H, et al. SGN-CD33A: a novel CD33-targeting antibody-drug conjugate using a pyrrolobenzodiazepine dimer is active in models of drug-resistant AML. Blood. 2013;122(8):1455–63.

    Article  CAS  Google Scholar 

  105. Moldenhauer G, Salnikov AV, Luttgau S, Herr I, Anderl J, Faulstich H. Therapeutic potential of amanitin-conjugated anti-epithelial cell adhesion molecule monoclonal antibody against pancreatic carcinoma. J Natl Cancer Inst. 2012;104(8):622–34.

    Article  CAS  PubMed  Google Scholar 

  106. Nolting B. Linker technologies for antibody-drug conjugates. Meth Mol Biol (Clifton, NJ). 2013;1045:71–100.

    Article  Google Scholar 

  107. Ducry L, Stump B. Antibody-drug conjugates: linking cytotoxic payloads to monoclonal antibodies. Bioconjug Chem. 2010;21(1):5–13.

    Article  CAS  PubMed  Google Scholar 

  108. Hamann PR, Hinman LM, Hollander I, Beyer CF, Lindh D, Holcomb R, et al. Gemtuzumab ozogamicin, a potent and selective anti-CD33 antibody-calicheamicin conjugate for treatment of acute myeloid leukemia. Bioconjug Chem. 2002;13(1):47–58.

    Article  CAS  PubMed  Google Scholar 

  109. Ambrx. 2014 [February 28, 2014]. Ambrx company website]. Available from: www.ambrx.com.

  110. DiJoseph JF, Popplewell A, Tickle S, Ladyman H, Lawson A, Kunz A, et al. Antibody-targeted chemotherapy of B-cell lymphoma using calicheamicin conjugated to murine or humanized antibody against CD22. Cancer Immunol Immunother CII. 2005;54(1):11–24.

    Article  CAS  PubMed  Google Scholar 

  111. Kellogg BA, Garrett L, Kovtun Y, Lai KC, Leece B, Miller M, et al. Disulfide-linked antibody-maytansinoid conjugates: optimization of in vivo activity by varying the steric hindrance at carbon atoms adjacent to the disulfide linkage. Bioconjug Chem. 2011;22(4):717–27.

    Article  CAS  PubMed  Google Scholar 

  112. Lewis Phillips GD, Li G, Dugger DL, Crocker LM, Parsons KL, Mai E, et al. Targeting HER2-positive breast cancer with trastuzumab-DM1, an antibody-cytotoxic drug conjugate. Cancer Res. 2008;68(22):9280–90.

    Article  CAS  PubMed  Google Scholar 

  113. Shen BQ, Bumbaca D, Saad O, Yue Q, Pastuskovas CV, Khojasteh SC, et al. Catabolic fate and pharmacokinetic characterization of trastuzumab emtansine (T-DM1): an emphasis on preclinical and clinical catabolism. Curr Drug Metab. 2012;13(7):901–10.

    Article  CAS  PubMed  Google Scholar 

  114. Allozyne. 2014 [February 28, 2014]. Allozyne company website]. Available from: www.allozyne.com.

  115. Nairn NW, Shanebeck KD, Wang A, Graddis TJ, VanBrunt MP, Thornton KC, et al. Development of copper-catalyzed azide-alkyne cycloaddition for increased in vivo efficacy of interferon beta-1b by site-specific PEGylation. Bioconjug Chem. 2012;23(10):2087–97.

    Article  CAS  PubMed  Google Scholar 

  116. Aijun Wang NWN, Marelli M, Grabstein K. Protein engineering with non-natural amino Acids. In: Kaumaya PP, editor. Protein Engineering: InTech; 2012.

  117. Redwood. Redwood Bioscience; 2014 [February 25, 2014]. Redwood Bioscience company website]. Available from: www.redwoodbioscience.com.

  118. Carrico IS, Carlson BL, Bertozzi CR. Introducing genetically encoded aldehydes into proteins. Nat Chem Biol. 2007;3(6):321–2.

    Article  CAS  PubMed  Google Scholar 

  119. Rabuka D, Rush JS, deHart GW, Wu P, Bertozzi CR. Site-specific chemical protein conjugation using genetically encoded aldehyde tags. Nat Protoc. 2012;7(6):1052–67.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  120. Agarwal P, Kudirka R, Albers AE, Barfield RM, de Hart GW, Drake PM, et al. Hydrazino-Pictet-Spengler ligation as a biocompatible method for the generation of stable protein conjugates. Bioconjug Chem. 2013;24(6):846–51.

    Article  CAS  PubMed  Google Scholar 

  121. Drake PM, Albers AE, Baker J, Banas S, Barfield RM, Bhat AS, et al. Aldehyde tag coupled with HIPS chemistry enables the production of ADCs conjugated site-specifically to different antibody regions with distinct in vivo efficacy and PK outcomes. Bioconjug Chem. 2014;25(7):1331–41.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  122. Balan S, Choi JW, Godwin A, Teo I, Laborde CM, Heidelberger S, et al. Site-specific PEGylation of protein disulfide bonds using a three-carbon bridge. Bioconjug Chem. 2007;18(1):61–76.

    Article  CAS  PubMed  Google Scholar 

  123. Thayer AM. Building antibody-drug conjugates. Chem Eng News. 2014;13–20.

  124. Castaneda L, Maruani A, Schumacher FF, Miranda E, Chudasama V, Chester KA, et al. Acid-cleavable thiomaleamic acid linker for homogeneous antibody-drug conjugation. Chem Commun. 2013;49(74):8187–9.

    Article  CAS  Google Scholar 

  125. Schumacher FF, Nobles M, Ryan CP, Smith ME, Tinker A, Caddick S, et al. In situ maleimide bridging of disulfides and a new approach to protein PEGylation. Bioconjug Chem. 2011;22(2):132–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  126. Schumacher FF, Sanchania VA, Tolner B, Wright ZV, Ryan CP, Smith ME, et al. Homogeneous antibody fragment conjugation by disulfide bridging introduces ‘spinostics’. Sci Rep. 2013;3:1525.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  127. Igenica. 2014 [March 9, 2014]. Igenica Company Website]. Available from: www.igenica.com.

  128. Cukier-Meisner E. Appreciating in private. BioCentury. 2014.

  129. Wakankar A, Chen Y, Gokarn Y, Jacobson FS. Analytical methods for physicochemical characterization of antibody drug conjugates. mAbs. 2011;3(2):161–72.

    Article  PubMed Central  PubMed  Google Scholar 

  130. Willner D, Trail PA, Hofstead SJ, King HD, Lasch SJ, Braslawsky GR, et al. (6-Maleimidocaproyl)hydrazone of doxorubicin--a new derivative for the preparation of immunoconjugates of doxorubicin. Bioconjug Chem. 1993;4(6):521–7.

    Article  CAS  PubMed  Google Scholar 

  131. Stephan JP, Kozak KR, Wong WL. Challenges in developing bioanalytical assays for characterization of antibody-drug conjugates. Bioanalysis. 2011;3(6):677–700.

    Article  CAS  PubMed  Google Scholar 

  132. Adem YT, Schwarz KA, Duenas E, Patapoff TW, Galush WJ, Esue O. Auristatin antibody drug conjugate physical instability and the role of drug payload. Bioconjug Chem. 2014;25(4):656–64.

    Article  CAS  PubMed  Google Scholar 

  133. Francisco JA, Cerveny CG, Meyer DL, Mixan BJ, Klussman K, Chace DF, et al. cAC10-vcMMAE, an anti-CD30-monomethyl auristatin E conjugate with potent and selective antitumor activity. Blood. 2003;102(4):1458–65.

    Article  CAS  PubMed  Google Scholar 

  134. Zolls S, Tantipolphan R, Wiggenhorn M, Winter G, Jiskoot W, Friess W, et al. Particles in therapeutic protein formulations, Part 1: overview of analytical methods. J Pharm Sci. 2012;101(3):914–35.

    Article  PubMed  CAS  Google Scholar 

  135. Singh SK, Afonina N, Awwad M, Bechtold-Peters K, Blue JT, Chou D, et al. An industry perspective on the monitoring of subvisible particles as a quality attribute for protein therapeutics. J Pharm Sci. 2010;99(8):3302–21.

    Article  CAS  PubMed  Google Scholar 

  136. Singh SK, Toler MR. Monitoring of subvisible particles in therapeutic proteins. Meth Mol Biol (Clifton, NJ). 2012;899:379–401.

    Article  CAS  Google Scholar 

  137. USP<1787>. Measurement of subvisible particulate matter in therapeutic protein injections. In: USP, editor. Washington, DC, USA 2014.

  138. Hudecz F, Garnett MC, Khan T, Baldwin RW. The influence of synthetic conditions on the stability of methotrexate-monoclonal antibody conjugates determined by reversed phase high performance liquid chromatography. Biomed Chromatogr BMC. 1992;6(3):128–32.

    Article  CAS  PubMed  Google Scholar 

  139. Greenfield RS, Kaneko T, Daues A, Edson MA, Fitzgerald KA, Olech LJ, et al. Evaluation in vitro of adriamycin immunoconjugates synthesized using an acid-sensitive hydrazone linker. Cancer Res. 1990;50(20):6600–7.

    CAS  PubMed  Google Scholar 

  140. Tolcher AW, Ochoa L, Hammond LA, Patnaik A, Edwards T, Takimoto C, et al. Cantuzumab mertansine, a maytansinoid immunoconjugate directed to the CanAg antigen: a phase I, pharmacokinetic, and biologic correlative study. J Clin Oncol Off J Am Soc Clin Oncol. 2003;21(2):211–22.

    Article  CAS  Google Scholar 

  141. Buckwalter M, Dowell JA, Korth-Bradley J, Gorovits B, Mayer PR. Pharmacokinetics of gemtuzumab ozogamicin as a single-agent treatment of pediatric patients with refractory or relapsed acute myeloid leukemia. J Clin Pharmacol. 2004;44(8):873–80.

    Article  CAS  PubMed  Google Scholar 

  142. Ingle GS, Chan P, Elliott JM, Chang WS, Koeppen H, Stephan JP, et al. High CD21 expression inhibits internalization of anti-CD19 antibodies and cytotoxicity of an anti-CD19-drug conjugate. Br J Haematol. 2008;140(1):46–58.

    PubMed Central  CAS  PubMed  Google Scholar 

  143. Sutherland MS, Sanderson RJ, Gordon KA, Andreyka J, Cerveny CG, Yu C, et al. Lysosomal trafficking and cysteine protease metabolism confer target-specific cytotoxicity by peptide-linked anti-CD30-auristatin conjugates. J Biol Chem. 2006;281(15):10540–7.

    Article  CAS  PubMed  Google Scholar 

  144. Law CL, Cerveny CG, Gordon KA, Klussman K, Mixan BJ, Chace DF, et al. Efficient elimination of B-lineage lymphomas by anti-CD20-auristatin conjugates. Clin Cancer Res Off J Am Assoc Cancer Res. 2004;10(23):7842–51.

    Article  CAS  Google Scholar 

  145. Pan LY, Salas-Solano O, Valliere-Douglass JF. Conformation and dynamics of interchain cysteine-linked antibody-drug conjugates as revealed by hydrogen/deuterium exchange mass spectrometry. Anal Chem. 2014;86(5):2657–64.

    Article  CAS  PubMed  Google Scholar 

  146. Acchione M, Kwon H, Jochheim CM, Atkins WM. Impact of linker and conjugation chemistry on antigen binding, Fc receptor binding and thermal stability of model antibody-drug conjugates. mAbs. 2012;4(3):362–72.

    Article  PubMed Central  PubMed  Google Scholar 

  147. Boylan NJ, Zhou W, Proos RJ, Tolbert TJ, Wolfe JL, Laurence JS. Conjugation site heterogeneity causes variable electrostatic properties in Fc conjugates. Bioconjug Chem. 2013;24(6):1008–16.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  148. Maeda E, Urakami K, Shimura K, Kinoshita M, Kakehi K. Charge heterogeneity of a therapeutic monoclonal antibody conjugated with a cytotoxic antitumor antibiotic, calicheamicin. J Chromatogr A. 2010;1217(45):7164–71.

    Article  CAS  PubMed  Google Scholar 

  149. Manning MC, Chou DK, Murphy BM, Payne RW, Katayama DS. Stability of protein pharmaceuticals: an update. Pharm Res. 2010;27(4):544–75.

    Article  PubMed  CAS  Google Scholar 

  150. Manning MC, Patel K, Borchardt RT. Stability of protein pharmaceuticals. Pharm Res. 1989;6(11):903–18.

    Article  CAS  PubMed  Google Scholar 

  151. Cleland JL, Powell MF, Shire SJ. The development of stable protein formulations: a close look at protein aggregation, deamidation, and oxidation. Crit Rev Ther Drug Carrier Syst. 1993;10(4):307–77.

    CAS  PubMed  Google Scholar 

  152. Siegel MM, Tabei K, Kunz A, Hollander IJ, Hamann RR, Bell DH, et al. Calicheamicin derivatives conjugated to monoclonal antibodies: determination of loading values and distributions by infrared and UV matrix-assisted laser desorption/ionization mass spectrometry and electrospray ionization mass spectrometry. Anal Chem. 1997;69(14):2716–26.

    Article  CAS  PubMed  Google Scholar 

  153. Sanderson RJ, Hering MA, James SF, Sun MM, Doronina SO, Siadak AW, et al. In vivo drug-linker stability of an anti-CD30 dipeptide-linked auristatin immunoconjugate. Clin Cancer Res Off J Am Assoc Cancer Res. 2005;11(2 Pt 1):843–52.

    CAS  Google Scholar 

  154. Carl PL, Chakravarty PK, Katzenellenbogen JA. A novel connector linkage applicable in prodrug design. J Med Chem. 1981;24(5):479–80.

    Article  CAS  PubMed  Google Scholar 

  155. Dubowchik GM, Firestone RA. Cathepsin B-sensitive dipeptide prodrugs. 1. A model study of structural requirements for efficient release of doxorubicin. Bioorg Med Chem Lett. 1998;8(23):3341–6.

    Article  CAS  PubMed  Google Scholar 

  156. Dubowchik GM, Mosure K, Knipe JO, Firestone RA. Cathepsin B-sensitive dipeptide prodrugs. 2. Models of anticancer drugs paclitaxel (Taxol), mitomycin C and doxorubicin. Bioorg Med Chem Lett. 1998;8(23):3347–52.

    Article  CAS  PubMed  Google Scholar 

  157. Lewis MR, Shively JE. Maleimidocysteineamido-DOTA derivatives: new reagents for radiometal chelate conjugation to antibody sulfhydryl groups undergo pH-dependent cleavage reactions. Bioconjug Chem. 1998;9(1):72–86.

    Article  CAS  PubMed  Google Scholar 

  158. Lin D, Saleh S, Liebler DC. Reversibility of covalent electrophile-protein adducts and chemical toxicity. Chem Res Toxicol. 2008;21(12):2361–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  159. Baldwin AD, Kiick KL. Tunable degradation of maleimide-thiol adducts in reducing environments. Bioconjug Chem. 2011;22(10):1946–53.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  160. Fishkin N, Maloney EK, Chari RV, Singh R. A novel pathway for maytansinoid release from thioether linked antibody-drug conjugates (ADCs) under oxidative conditions. Chem Commun. 2011;47(38):10752–4.

    Article  CAS  Google Scholar 

  161. Dere R, Yi JH, Lei C, Saad OM, Huang C, Li Y, et al. PK assays for antibody-drug conjugates: case study with ado-trastuzumab emtansine. Bioanalysis. 2013;5(9):1025–40.

    Article  CAS  PubMed  Google Scholar 

  162. Wang W. Instability, stabilization, and formulation of liquid protein pharmaceuticals. Int J Pharm. 1999;185(2):129–88.

    Article  CAS  PubMed  Google Scholar 

  163. Myers AG, Cohen SB, Kwon BM. A study of the reaction of calicheamicin.Gamma.1 with glutathione in the presence of double-stranded DNA. J Am Chem Soc. 1994;116(4):1255–71.

    Article  CAS  Google Scholar 

  164. Hollander I, Kunz A, Hamann PR. Selection of reaction additives used in the preparation of monomeric antibody-calicheamicin conjugates. Bioconjug Chem. 2008;19(1):358–61.

    Article  CAS  PubMed  Google Scholar 

  165. Safavy A, Bonner JA, Waksal HW, Buchsbaum DJ, Gillespie GY, Khazaeli MB, et al. Synthesis and biological evaluation of paclitaxel-C225 conjugate as a model for targeted drug delivery. Bioconjug Chem. 2003;14(2):302–10.

    Article  CAS  PubMed  Google Scholar 

  166. Zhao RY, Wilhelm SD, Audette C, Jones G, Leece BA, Lazar AC, et al. Synthesis and evaluation of hydrophilic linkers for antibody-maytansinoid conjugates. J Med Chem. 2011;54(10):3606–23.

    Article  CAS  PubMed  Google Scholar 

  167. Kovtun YV, Audette CA, Mayo MF, Jones GE, Doherty H, Maloney EK, et al. Antibody-maytansinoid conjugates designed to bypass multidrug resistance. Cancer Res. 2010;70(6):2528–37.

    Article  CAS  PubMed  Google Scholar 

  168. King HD, Dubowchik GM, Mastalerz H, Willner D, Hofstead SJ, Firestone RA, et al. Monoclonal antibody conjugates of doxorubicin prepared with branched peptide linkers: inhibition of aggregation by methoxytriethyleneglycol chains. J Med Chem. 2002;45(19):4336–43.

    Article  CAS  PubMed  Google Scholar 

  169. Chari R, Jerath K, Badkar AV, Kalonia DS. Long- and short-range electrostatic interactions affect the rheology of highly concentrated antibody solutions. Pharm Res. 2009;26(12):2607–18.

    Article  CAS  PubMed  Google Scholar 

  170. Yadav S, Laue TM, Kalonia DS, Singh SN, Shire SJ. The influence of charge distribution on self-association and viscosity behavior of monoclonal antibody solutions. Mol Pharm. 2012;9(4):791–802.

    Article  CAS  PubMed  Google Scholar 

  171. Dominy BN, Minoux H, Brooks 3rd CL. An electrostatic basis for the stability of thermophilic proteins. Proteins. 2004;57(1):128–41.

    Article  CAS  PubMed  Google Scholar 

  172. Wang J, Dang V, Zhao W, Lu D, Rivera BK, Villamena FA, et al. Perchlorotrityl radical-fluorophore conjugates as dual fluorescence and EPR probes for superoxide radical anion. Bioorg Med Chem. 2010;18(2):922–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  173. Wang W. Protein aggregation and its inhibition in biopharmaceutics. Int J Pharm. 2005;289(1–2):1–30.

    Article  CAS  PubMed  Google Scholar 

  174. Philo J. A critical review of methods for size characterization of non-particulate protein aggregates. Curr Pharm Biotechnol. 2009;10:359–72.

    Article  CAS  PubMed  Google Scholar 

  175. Carpenter JF, Pikal MJ, Chang BS, Randolph TW. Rational design of stable lyophilized protein formulations: some practical advice. Pharm Res. 1997;14(8):969–75.

    Article  CAS  PubMed  Google Scholar 

  176. Ducry L. Challenges in the development and manufacturing of antibody-drug conjugates. Meth Mol Biol (Clifton, NJ). 2012;899:489–97.

    Article  CAS  Google Scholar 

  177. Wang W, Cui TY, Wang YJ, Martin-Moe S. Oxidation of protein by vaporized sanitizing agents. PDA J Pharm Sci Technol / PDA. 2004;58(3):121–9.

    CAS  Google Scholar 

  178. Singh SK, Kolhe P, Wang W, Nema S. Large-scale freezing of biologics. A practioner’s review Part One: Fundamental aspects. BioProcess Int. 2009;7(9):32–44.

    CAS  Google Scholar 

  179. Singh SK, Kolhe P, Wang W, Nema S. Large-scale freezing of biologics. A practioner’s reveiw. Part 2: practical advice. BioProcess Int. 2009;7(10):34–42.

    CAS  Google Scholar 

  180. Singh SK, Kolhe P, Mehta AP, Chico SC, Lary AL, Huang M. Frozen state storage instability of a monoclonal antibody: aggregation as a consequence of trehalose crystallization and protein unfolding. Pharm Res. 2011;28(4):873–85.

    Article  CAS  PubMed  Google Scholar 

  181. Zhou R, Schlam RF, Yin S, Gandhi RB, Adams ML. Scale considerations for selection of saccharide excipients for liquid formulations. J Pharm Sci. 2011;100(4):1605–6.

    Article  CAS  PubMed  Google Scholar 

  182. Kolhe P, Mehta AP, Lary AL, Chico SC, Singh SK. Large-scale freezing of biologics (Part III). Understanding frozen-state protein and solute concentration changes in Celsius bags. BioPharm Int. 2012;25(10):40–8.

    CAS  Google Scholar 

  183. Bhatnagar BS, Bogner RH, Pikal MJ. Protein stability during freezing: separation of stresses and mechanisms of protein stabilization. Pharm Dev Technol. 2007;12(5):505–23.

    Article  CAS  PubMed  Google Scholar 

  184. Kolhe P, Amend E, Singh SK. Impact of freezing on pH of buffered solutions and consequences for monoclonal antibody aggregation. Biotechnol Prog. 2010;26(3):727–33.

    Article  CAS  PubMed  Google Scholar 

  185. Metcalfe JW. Microbiological quality of drug products after penetration of the container system for dose preparation prior to patient administration. Am Pharm Rev. 2009;12(1):84–9.

    Google Scholar 

  186. FDA U. Guidance for Industry. Dosage and administration section of labeling for human prescriptiopn drug and biological products - content and format. 2010.

  187. Demeule B, Palais C, Machaidze G, Gurny R, Arvinte T. New methods allowing the detection of protein aggregates: a case study on trastuzumab. mAbs. 2009;1(2):142–50.

    Article  PubMed Central  PubMed  Google Scholar 

  188. Sreedhara A, Glover ZK, Piros N, Xiao N, Patel A, Kabakoff B. Stability of IgG1 monoclonal antibodies in intravenous infusion bags under clinical in-use conditions. J Pharm Sci. 2012;101(1):21–30.

    Article  CAS  PubMed  Google Scholar 

  189. Baertschi SW, Clapham D, Foti C, Jansen PJ, Kristensen S, Reed RA, et al. Implications of in-use photostability: proposed guidance for photostability testing and labeling to support the administration of photosensitive pharmaceutical products, part 1: drug products administered by injection. J Pharm Sci. 2013;102(11):3888–99.

    Article  CAS  PubMed  Google Scholar 

  190. Kumru OS, Liu J, Ji JA, Cheng W, Wang YJ, Wang T, et al. Compatibility, physical stability, and characterization of an IgG4 monoclonal antibody after dilution into different intravenous administration bags. J Pharm Sci. 2012;101(10):3636–50.

    Article  CAS  PubMed  Google Scholar 

  191. Mikisinski SP, Shapiro M. Regulatory considerations for antibody-drug conjugates2012 February 2014. Available from: http://www.fda.gov/downloads/AboutFDA/CentersOffices/ OfficeofMedicalProductsandTobacco/CDER/UCM341177.pdf.

  192. Impurities in new drug substances. 2006.

  193. Q3B(R2) I. Impurities in new drug products. 2006.

  194. Nonclinical evaluation for anticancer pharmaceuticals. 2009.

  195. EMEA. Guideline on the limits of genotoxic impurities. EMEA/CHMP/QWP/251344/2006. 2006.

  196. Jones MT, Gong HH, Lee DH, Zheng J, Kott L, Miller S, et al. Risk assesment for small molceule impurities in Antibody Drug Conjugaes (ADC). BioPharm Int. 2014;27(tbd):tbd.

  197. Harris J, Jacobson FS, Jochheim CM, Amphlett G, Francissen K, McLeod L. Uniting small molecule and biologic drug perspectives. Analytical characterization and regulatory considerations for antibody-drug conjugates. BioProcess Int. 2011;9(8):12–22.

    CAS  Google Scholar 

  198. Xiao YQ, Halford A, Hayes RN. Meeting challenges for analysis of antibody-drug conjugates. BioProcess Int. 2012;25(10):60–3.

    CAS  Google Scholar 

  199. Good manufacturing practice guide for active pharmaceutical ingredients. 2000.

  200. Development and manufacture of drug substances (chemical entities and biotechnological/biologic entities). 2012.

  201. Shapiro MA, Chen X-H. Regulatory considerations when developing assays for the characterization and quality control of antibody-drug conjugates. Am Lab. 2012;44(8):1–7.

    Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

All authors are employees of Pfizer, Inc and hold financial interest in Pfizer, Inc. We acknowledge Sandeep Kumar of Pfizer for the model in Fig. 1 and to our many colleagues in Biotherapeutics Pharmaceutical Science who helped review the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger H. Pak.

Additional information

Satish K. Singh, Donna L. Luisi and Roger H. Pak contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, S.K., Luisi, D.L. & Pak, R.H. Antibody-Drug Conjugates: Design, Formulation and Physicochemical Stability. Pharm Res 32, 3541–3571 (2015). https://doi.org/10.1007/s11095-015-1704-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-015-1704-4

KEY WORDS

Navigation