Skip to main content

Validating CFD Predictions of Pharmaceutical Aerosol Deposition with In Vivo Data

ABSTRACT

Purpose

CFD provides a powerful approach to evaluate the deposition of pharmaceutical aerosols; however, previous studies have not compared CFD results of deposition throughout the lungs with in vivo data.

Methods

The in vivo datasets selected for comparison with CFD predictions included fast and slow clearance of monodisperse aerosols as well as 2D gamma scintigraphy measurements for a dry powder inhaler (DPI) and softmist inhaler (SMI). The CFD model included the inhaler, a characteristic model of the mouth-throat (MT) and upper tracheobronchial (TB) airways, stochastic individual pathways (SIPs) representing the remaining TB region, and recent CFD-based correlations to predict pharmaceutical aerosol deposition in the alveolar airways.

Results

For the monodisperse aerosol, CFD predictions of total lung deposition agreed with in vivo data providing a percent relative error of 6% averaged across aerosol sizes of 1–7 μm. With the DPI and SMI, deposition was evaluated in the MT, central airways (bifurcations B1-B7), and intermediate plus peripheral airways (B8 through alveoli). Across these regions, CFD predictions produced an average relative error <10% for each inhaler.

Conclusions

CFD simulations with the SIP modeling approach were shown to accurately predict regional deposition throughout the lungs for multiple aerosol types and different in vivo assessment methods.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Abbreviations

1D:

One dimensional

2D:

Two dimensional

3D:

Three dimensional

B#:

Airway bifurcation number

C:

Central

CFD:

Computational fluid dynamics

COPD:

Chronic obstructive pulmonary disease

CT:

Computed tomography

DF:

Deposition fraction

DPI:

Dry powder inhaler

EXP:

Experimental

FRC:

Functional residual capacity

HPLC:

High performance liquid chromatography

I:

Intermediate

LL:

Left lower (lung lobe)

LPM:

Liters per minute

LRN:

Low Reynolds Number

MDI:

Metered dose inhaler

MMAD:

Mass median aerodynamic diameter

MP:

Mouthpiece

MT:

Mouth-throat

NGI:

Next Generation Impactor

P:

Peripheral

PIFR:

Peak inspiratory flow rate

PSD:

Particle size distribution

QD:

Quick-and-deep

SD:

Slow-and-deep or standard deviation

SIP:

Stochastic individual pathway

SMI:

Softmist inhaler

SPECT:

Single-photon emission computed tomography

TB:

Tracheobronchial

REFERENCES

  1. 1.

    Patton JS, Byron PR. Inhaling medicines: delivering drugs to the body through the lungs. Nat Rev Drug Discov. 2007;6:67–74.

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Willson DF, Notter RH. The future of exogenous surfactant therapy. Respir Care. 2011;56:1369–88.

    Article  PubMed  Google Scholar 

  3. 3.

    Geller DE. Aerosol antibiotics in cystic fibrosis. Respir Care. 2009;54:658–70.

    Article  PubMed  Google Scholar 

  4. 4.

    Usmani OS, Biddiscombe MF, Barnes PJ. Regional lung deposition and bronchodilator response as a function of beta(2)-agonist particle size. Am J Respir Crit Care Med. 2005;172:1497–504.

    Article  PubMed  Google Scholar 

  5. 5.

    Postma DS, van den Berge M. Small airway dysfunction in asthma and COPD: consequences for therapy and the future. Respir Drug Deliv Eur. 2013;1:1–12.

    Google Scholar 

  6. 6.

    Usmani OS, Barnes PJ. Assessing and treating small airways disease in asthma and chronic obstructive pulmonary disease. Ann Med. 2012;44:146–56.

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Gelfand EW, Kraft M. The importance and features of the distal airways in children and adults. J Allergy Clin Immunol. 2009;124:S84–7.

    Article  PubMed  Google Scholar 

  8. 8.

    Longest PW, Holbrook LT. In silico models of aerosol delivery to the respiratory tract—development and applications. Adv Drug Deliv Rev. 2012;64:296–311.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  9. 9.

    Stahlhofen W, Rudolf G, James AC. Intercomparison of experimental regional aerosol deposition data. J Aerosol Med. 1989;2:285–308.

    Article  Google Scholar 

  10. 10.

    Finlay WH, Martin AR. Recent advances in predictive understanding of respiratory tract deposition. J Aerosol Med Pulm Drug Deliv. 2008;21:189–205.

    Article  PubMed  Google Scholar 

  11. 11.

    Martin AR, Finlay WH. A general, algebraic equation for predicting total respiratory tract deposition of micrometer-sized aerosol particles in humans. J Aerosol Sci. 2007;38:246–53.

    CAS  Article  Google Scholar 

  12. 12.

    DeHaan WH, Finlay WH. Predicting extrathoracic deposition from dry powder inhalers. J Aerosol Sci. 2004;35:309–31.

    CAS  Article  Google Scholar 

  13. 13.

    Choi J, Kim CS. Mathematical analysis of particle deposition in human lungs: an improved single path transport model. Inhal Toxicol. 2007;19:925–39.

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Asgharian B, Hofmann W, Bergmann R. Particle deposition in a multiple-path model of the human lung. Aerosol Sci Technol. 2001;34:332–9.

    CAS  Article  Google Scholar 

  15. 15.

    Martonen TB. Analytical model of hygroscopic particle behavior in human airways. Bull Math Biol. 1982;44:425–42.

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Koblinger L, Hofmann W. Monte Carlo modeling of aerosol deposition in human lungs. Part I: simulation of particle transport in a stochastic lung structure. J Aerosol Sci. 1990;21:661–74.

    Article  Google Scholar 

  17. 17.

    Katz I, Pichelin M, Caillibotte G, Montesantos S, Majoral C, Martonen T, et al. Controlled, parametric, individualized, 2D, and 3D imaging measurements of aerosol deposition in the respiratory tract of healthy human subjects: preliminary comparisons with simulations. Aerosol Sci Technol. 2013;47:714–23.

    CAS  Article  Google Scholar 

  18. 18.

    Conway J, Fleming J, Majoral C, Katz I, Perchet D, Peebles C, et al. Controlled, parametric, individualized, 2-D and 3-D imaging measurements of aerosol deposition in the respiratory tract of healthy human subjects for model validation. J Aerosol Sci. 2012;52:1–17.

    CAS  Article  Google Scholar 

  19. 19.

    Fleming JS, Epps BP, Conway JH, Martonen TB. Comparison of SPECT aerosol deposition data with a human respiratory tract model. J Aerosol Med-Depos Clear Eff Lung. 2006;19:268–78.

    Article  Google Scholar 

  20. 20.

    Kim CS. Deposition of aerosol particles in human lungs: in vivo measurement and modeling. Biomarkers. 2009;14(S1):54–8.

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Longest PW, Hindle M, Das Choudhuri S, Xi J. Comparison of ambient and spray aerosol deposition in a standard induction port and more realistic mouth-throat geometry. J Aerosol Sci. 2008;39:572–91.

    CAS  Article  Google Scholar 

  22. 22.

    Longest PW, Hindle M. Evaluation of the Respimat soft mist inhaler using a concurrent CFD and in vitro approach. J Aerosol Med Pulm Drug Deliv. 2009;22:99–112.

    Article  Google Scholar 

  23. 23.

    Longest PW, Tian G, Delvadia R, Hindle M. Development of a stochastic individual path (SIP) model for predicting the deposition of pharmaceutical aerosols: effects of turbulence, polydisperse aerosol size, and evaluation of multiple lung lobes. Aerosol Sci Technol. 2012;46:1271–85.

    CAS  Article  Google Scholar 

  24. 24.

    Oldham MJ, Phalen RF, Heistracher T. Computational fluid dynamic predictions and experimental results for particle deposition in an airway model. Aerosol Sci Technol. 2000;32:61–71.

    CAS  Article  Google Scholar 

  25. 25.

    Sznitman J, Sutter R, Altorfer D, Stampanonim M, Rosgen T, Schittny JC. Visualization of respiratory flows from 3D reconstructed alveolar airsapces using X-ray tomographic microscopy. J Vis. 2010;13:337–45.

    Article  Google Scholar 

  26. 26.

    Xi J, Longest PW. Numerical predictions of submicrometer aerosol deposition in the nasal cavity using a novel drift flux approach. Int J Heat Mass Tran. 2008;51:5562–77.

    Article  Google Scholar 

  27. 27.

    Golshahi L, Noga ML, Finlay WH. Deposition of inhaled micrometer-sized particles in oropharyngeal airway replicas of children at constant flow rates. J Aerosol Sci. 2012;49:21–31.

    CAS  Article  Google Scholar 

  28. 28.

    Xi J, Longest PW, Martonen TB. Effects of the laryngeal jet on nano- and microparticle transport and deposition in an approximate model of the upper tracheobronchial airways. J Appl Physiol. 2008;104:1761–77.

    Article  PubMed  Google Scholar 

  29. 29.

    Longest PW, Vinchurkar S, Martonen TB. Transport and deposition of respiratory aerosols in models of childhood asthma. J Aerosol Sci. 2006;37:1234–57.

    CAS  Article  Google Scholar 

  30. 30.

    Sznitman J, Heimsch T, Wildhaber JH, Tsuda A, Rosgen T. Respiratory flow phenomena and gravitational deposition in a three-dimensional space-filling model of the pulmonary acinar tree. J Biomech Eng. 2009;131:031010.

  31. 31.

    Lambert AR, O’Shaughnessy PT, Tawhai MH, Hoffman EA, Lin C-L. Regional deposition of particles in an image-based airway model: large-eddy simulation and left-right lung ventilation asymmetry. Aerosol Sci Technol. 2011;45:11–25.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  32. 32.

    Inthavong K, Choi L-T, Tu J, Diang S, Thien F. Micron particle deposition in a tracheobronchial airway model under different breathing conditions. Med Eng Phys. 2010;32:1198–212.

    Article  PubMed  Google Scholar 

  33. 33.

    Lin C-L, Tawhai MH, McLennan G, Hoffman EA. Characteristics of the turbulent laryngeal jet and its effect on airflow in the human intra-thoracic airways. Respir Physiol Neurobiol. 2007;157:295–309.

    PubMed Central  Article  PubMed  Google Scholar 

  34. 34.

    Choi J, Tawhai M, Hoffman EA, Lin CL. On intra- and intersubject variabilities of airflow in the human lungs. Phys Fluids. 2009;21:101901.

  35. 35.

    Li Z, Kleinstreuer C, Zhang Z. Particle deposition in the human tracheobronchial airways due to transient inspiratory flow patterns. Aerosol Sci. 2007;38:625–44.

    Article  Google Scholar 

  36. 36.

    Lin C-L, Tawhai MH, McLennan G, Hoffman EA. Multiscale simulation of gas flow in subject-specific models of the human lung. IEEE Eng Med Biol. 2009;28:25–33.

    CAS  Google Scholar 

  37. 37.

    Walters DK, Luke WH. A method for three-dimensional Navier Stokes simulations of large-scale regions of the human lung airway. J Fluids Eng. 2010;051101.

  38. 38.

    Walters DK, Luke WH. Computational fluid dynamics simulations of particle deposition in large-scale multigenerational lung models. J Biomech Eng. 2011;133:011003.

    Article  PubMed  Google Scholar 

  39. 39.

    Kleinstreuer C, Zhang Z. An adjustable triple-bifurcation unit model for air-particle flow simulations in human tracheobronchial airways. J Biomech Eng. 2009;131:021007.

    CAS  Article  PubMed  Google Scholar 

  40. 40.

    Tian G, Longest PW, Su G, Walenga RL, Hindle M. Development of a stochastic individual path (SIP) model for predicting the tracheobronchial deposition of pharmaceutical aerosols: effects of transient inhalation and sampling the airways. J Aerosol Sci. 2011;42:781–99.

    CAS  Article  Google Scholar 

  41. 41.

    Longest PW, Tian G, Walenga RL, Hindle M. Comparing MDI and DPI aerosol deposition using in vitro experiments and a new stochastic individual path (SIP) model of the conducting airways. Pharm Res. 2012;29:1670–88.

    CAS  Article  PubMed  Google Scholar 

  42. 42.

    Khajeh-Hosseini-Dalasm N, Longest PW. Deposition of particles in the alveolar airways: inhalation and breath-hold with pharmaceutical aerosols. J Aerosol Sci. 2015;79:15–30.

    CAS  Article  PubMed  Google Scholar 

  43. 43.

    Tian G, Longest PW, Su G, Hindle M. Characterization of respiratory drug delivery with enhanced condensational growth (ECG) using an individual path model of the entire tracheobronchial airways. Ann Biomed Eng. 2011;39:1136–53.

    PubMed Central  Article  PubMed  Google Scholar 

  44. 44.

    Tian G, Longest PW, Li X, Hindle M. Targeting aerosol deposition to and within the lung airways using excipient enhanced growth. J Aerosol Med Pulm Drug Deliv. 2013;26:248–65.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  45. 45.

    Tian G, Hindle M, Longest PW. Targeted lung delivery of nasally administered aerosols. Aerosol Sci Technol. 2014;48:434–49.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  46. 46.

    Longest PW, Tian G, Li X, Son Y-J, Hindle M. Performance of combination drug and hygroscopic excipient submicrometer particles from a softmist inhaler in a characteristic model of the airways. Ann Biomed Eng. 2012;40:2596–610.

    PubMed Central  Article  PubMed  Google Scholar 

  47. 47.

    Longest PW, Vinchurkar S. Validating CFD predictions of respiratory aerosol deposition: effects of upstream transition and turbulence. J Biomech. 2007;40:305–16.

    Article  Google Scholar 

  48. 48.

    Holbrook LT, Longest PW. Validating CFD predictions of highly localized aerosol deposition in airway models: In vitro data and effects of surface properties. J Aerosol Sci. 2013;59:6–21.

    CAS  Article  Google Scholar 

  49. 49.

    Longest PW, Oldham MJ. Mutual enhancements of CFD modeling and experimental data: a case study of one micrometer particle deposition in a branching airway model. Inhal Toxicol. 2006;18:761–72.

    CAS  Article  PubMed  Google Scholar 

  50. 50.

    Biddiscombe MF, Meah SN, Underwood SR, Usmani OS. Comparing lung regions of interest in gamma scintigraphy for assessing inhaled therapeutic aerosol deposition. J Aerosol Med Pulm Drug Deliv. 2011;24:165–73.

    Article  PubMed  Google Scholar 

  51. 51.

    Newman SP, Pitcairn GR, Hirst PH, Bacon RE, O’Keefe E, Reiners M, et al. Scintigraphic comparison of budesonide deposition from two dry powder inhalers. Eur Respir J. 2000;16:178–83.

    CAS  Article  PubMed  Google Scholar 

  52. 52.

    Newman SP, Brown J, Steed KP, Reader SJ, Kladders H. Lung deposition of fenoterol and flunisolide delivered using a novel device for inhaled medicines. Chest. 1998;113:957–63.

    CAS  Article  PubMed  Google Scholar 

  53. 53.

    Walenga RL, Tian G, Longest PW. Development of characteristic upper tracheobronchial airway models for testing pharmaceutical aerosol delivery. ASME J Biomech Eng. 2013;135(9):091010.

    Article  Google Scholar 

  54. 54.

    Delvadia R, Longest PW, Byron PR. In vitro tests for aerosol deposition. I. Scaling a physical model of the upper airways to predict drug deposition variation in normal humans. J Aerosol Med. 2012;25:32–40.

    CAS  Article  Google Scholar 

  55. 55.

    Asgharian B, Hofmann W, Miller FJ. Mucociliary clearance of insoluble particles from the tracheobronchial airways of the human lung. J Aerosol Sci. 2001;32:817–32.

    CAS  Article  Google Scholar 

  56. 56.

    Heyder J, Gebhart J, Rudolf G, Schiller CF, Stahlhofen W. Deposition of particles in the human respiratory tract in the size range of 0.005–15 microns. J Aerosol Sci. 1986;17:811–25.

    Article  Google Scholar 

  57. 57.

    Newman SP, Clark SR, Talaee N, Clarke SW. Pressurised aerosol deposition in the human lung with and without an open spacer. Thorax. 1989;44:706–10.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  58. 58.

    Steed KP, Towse LJ, Freund B, Newman SP. Lung and oropharyngeal depositions of fenoterol hydrobromide delivered from the prototype III hand-held multidose Respimat nebuliser. Eur J Pharm Sci. 1997;5:55–61.

    CAS  Article  Google Scholar 

  59. 59.

    Delvadia RR, Longest PW, Hindle M, Byron PR. In vitro tests for aerosol deposition. III: effect of Inhaler insertion angle on aerosol deposition. J Aerosol Med Pulm Drug Deliv. 2013;26:145–56.

    CAS  Article  PubMed  Google Scholar 

  60. 60.

    Fenton C, Keating GM, Plosker GL. Novolizer: a multidose dry powder inhaler. Drugs. 2003;63:2437–45.

    CAS  Article  PubMed  Google Scholar 

  61. 61.

    Dalby R, Spallek M, Voshaar T. A review of the development of Respimat soft mist inhaler. Int J Pharm. 2004;283:1–9.

    CAS  Article  PubMed  Google Scholar 

  62. 62.

    Hochrainer D, Holz H, Kreher C, Scaffidi L, Spallek M, Wachtel H. Comparison of the aerosol velocity and spray duration of Respimat soft mist inhaler and pressurized metered dose inhalers. J Aerosol Med. 2005;18:273–82.

    CAS  Article  PubMed  Google Scholar 

  63. 63.

    Longest PW, Hindle M, Das Choudhuri S, Byron PR. Developing a better understanding of spray system design using a combination of CFD modeling and experiment. In: Dalby RN, Byron PR, Peart J, Suman JD, Farr SJ, Young PM, editors. Proceedings of respiratory drug delivery 2008. Illinois: Davis Healthcare International Publishing; 2008.

    Google Scholar 

  64. 64.

    Pitcairn G, Reader S, Pavia D, Newman S. Deposition of corticosteriod aerosol in the human lung by Respimat soft mist inhaler compared to deposition by metered dose inhaler or by Turbuhaler dry power inhaler. J Aerosol Med. 2005;18:264–72.

    CAS  Article  PubMed  Google Scholar 

  65. 65.

    Xi J, Longest PW. Transport and deposition of micro-aerosols in realistic and simplified models of the oral airway. Ann Biomed Eng. 2007;35:560–81.

    Article  PubMed  Google Scholar 

  66. 66.

    Cheng KH, Cheng YS, Yeh HC, Swift DL. Measurements of airway dimensions and calculation of mass transfer characteristics of the human oral passage. J Biomech Eng. 1997;119:476–82.

    CAS  Article  PubMed  Google Scholar 

  67. 67.

    Delvadia R, Hindle M, Longest PW, Byron PR. In vitro tests for aerosol deposition II: IVIVCs for different dry powder inhalers in normal adults. J Aerosol Med Pulm Drug Deliv. 2013;26:138–44.

    CAS  Article  PubMed  Google Scholar 

  68. 68.

    Yeh HC, Schum GM. Models of human lung airways and their application to inhaled particle deposition. Bull Math Biol. 1980;42:461–80.

    CAS  Article  PubMed  Google Scholar 

  69. 69.

    ICRP. Human respiratory tract model for radiological protection. New York: Elsevier Science Ltd.; 1994.

    Google Scholar 

  70. 70.

    Fleming JS, Sauret V, Conway JH, Martonen TB. Validation of the conceptual anatomical model of the lung airway. J Aerosol Med-Depos Clear Eff Lung. 2004;17:260–9.

    Article  Google Scholar 

  71. 71.

    Heistracher T, Hofmann W. Physiologically realistic models of bronchial airway bifurcations. J Aerosol Sci. 1995;26:497–509.

    CAS  Article  Google Scholar 

  72. 72.

    Vinchurkar S, Longest PW. Evaluation of hexahedral, prismatic and hybrid mesh styles for simulating respiratory aerosol dynamics. Comput Fluids. 2008;37:317–31.

    Article  Google Scholar 

  73. 73.

    Phalen RF, Yeh HC, Schum GM, Raabe OG. Application of an idealized model to morphometry of the mammalian tracheobronchial tree. Anat Rec. 1978;190:167–76.

    CAS  Article  PubMed  Google Scholar 

  74. 74.

    Ghalichi F, Deng X, Champlain AD, Douville Y, King M, Guidoin R. Low Reynolds number turbulence modeling of blood flow in arterial stenoses. Biorheology. 1998;35:281–94.

    CAS  Article  PubMed  Google Scholar 

  75. 75.

    Wilcox DC. Turbulence modeling for CFD. 2nd ed. California: DCW Industries, Inc.; 1998.

    Google Scholar 

  76. 76.

    Longest PW, Xi J. Condensational growth may contribute to the enhanced deposition of cigarette smoke particles in the upper respiratory tract. Aerosol Sci Technol. 2008;42:579–602.

    CAS  Article  Google Scholar 

  77. 77.

    Longest PW, Kleinstreuer C, Buchanan JR. Efficient computation of micro-particle dynamics including wall effects. Comput Fluids. 2004;33:577–601.

    Article  Google Scholar 

  78. 78.

    Longest PW, Xi J. Effectiveness of direct Lagrangian tracking models for simulating nanoparticle deposition in the upper airways. Aerosol Sci Technol. 2007;41:380–97.

    CAS  Article  Google Scholar 

  79. 79.

    Gosman AD, Ioannides E. Aspects of computer simulation of liquid-fueled combustors. J Energ. 1981;7:482–90.

    Article  Google Scholar 

  80. 80.

    Matida EA, Finlay WH, Grgic LB. Improved numerical simulation of aerosol deposition in an idealized mouth-throat. J Aerosol Sci. 2004;35:1–19.

    CAS  Article  Google Scholar 

  81. 81.

    Wang Y, James PW. On the effect of anisotropy on the turbulent dispersion and deposition of small particles. Int J Multiphase Flow. 1999;22:551–8.

    Article  Google Scholar 

  82. 82.

    Horsfield K, Dart G, Olson DE, Filley GF, Cumming G. Models of the human bronchial tree. J Appl Physiol. 1971;31:207–17.

    CAS  PubMed  Google Scholar 

  83. 83.

    Asgharian B, Price OT. Airflow distribution in the human lung and its influence on particle deposition. Inhal Toxicol. 2006;18:795–801.

    CAS  Article  PubMed  Google Scholar 

  84. 84.

    Yin Y, Choi J, Hoffman EA, Tawhai MH, Lin C-L. Simulation of pulmonary air flow with a subject-specific boundary condition. J Biomech. 2010;43:2159–63.

    PubMed Central  Article  PubMed  Google Scholar 

  85. 85.

    Newman S, Bennett WD, Biddiscombe M, Devadason SG, Dolovich MB, Fleming J, et al. Standardization of techniques for using planar (2D) imaging for aerosol deposition assessment of orally inhaled products. J Aerosol Med Pulm Drug Deliv. 2012;25:S10–28.

    Article  PubMed  Google Scholar 

  86. 86.

    Matida EA, Finlay WH, Breuer M, Lange CF. Improving prediction of aerosol deposition in an idealized mouth using large-eddy simulation. J Aerosol Med. 2006;19:290–300.

    CAS  Article  PubMed  Google Scholar 

  87. 87.

    Longest PW, Hindle M, Das Choudhuri S, Byron PR. Numerical simulations of capillary aerosol generation: CFD model development and comparisons with experimental data. Aerosol Sci Technol. 2007;41:952–73.

    CAS  Article  Google Scholar 

  88. 88.

    Kleinstreuer C, Shi H, Zhang Z. Computational analyses of a pressurized metered dose inhaler and an new drug-aerosol targeting methodology. J Aerosol Med. 2007;20:294–309.

    CAS  Article  PubMed  Google Scholar 

  89. 89.

    Vinchurkar S, De Backer L, Vos WG, Van Holsbeke C, De Backer J, De Backer W. A case series on lung deposition analysis of inhaled medication using functional imaging based computational fluid dynamics in asthmatic patients: effect of upper airway morphology and comparision with in vivo data. Inhal Toxicol. 2012;24:81–8.

    CAS  Article  PubMed  Google Scholar 

  90. 90.

    Chan TL, Lippmann M. Experimental measurements and emperical modeling of the regional deposition of inhaled particles in humans. Am Ind Hyg Assoc J. 1980;41:399–409.

    CAS  Article  PubMed  Google Scholar 

  91. 91.

    Hofmann W, Koblinger L. Monte-Carlo modeling of aerosol deposition in human lungs.3. Comparison with experimental-data. J Aerosol Sci. 1992;23:51–63.

    CAS  Article  Google Scholar 

  92. 92.

    Longest PW, Hindle M. Condensational growth of combination drug-excipient submicrometer particles: comparison of CFD predictions with experimental results. Pharm Res. 2012;29:707–21.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  93. 93.

    Subramaniam RP, Asgharian B, Freijer JI, Miller FJ, Anjilvel S. Analysis of lobar differences in particle deposition in the human lung. Inhal Toxicol. 2003;15:1–21.

    CAS  Article  PubMed  Google Scholar 

  94. 94.

    Oakes JM, Marsden AL, Grandmont C, Darquenne C, Vignon-Clementel IE. Distribution of aerosolized particles in healthy and emphysematous rat lungs: comparison between experimental and numerical studies. J Biomech. 2015;48(6):1147–57.

  95. 95.

    Oakes JM, Scadeng M, Breen EC, Prisk GK, Darquenne C. Regional distribution of aerosol deposition in rat lungs using magnetic resonance imaging. Ann Biomed Eng. 2013;41:967–78.

    PubMed Central  Article  PubMed  Google Scholar 

  96. 96.

    Longest PW, Hindle M. Quantitative analysis and design of a spray aerosol inhaler. Part 1: effects of dilution air inlets and flow paths. J Aerosol Med Pulm Drug Deliv. 2009;22:271–83.

    Article  PubMed  Google Scholar 

  97. 97.

    Hindle M, Longest PW. Quantitative analysis and design of a spray aerosol inhaler. Part 2: improvements in mouthpiece performance. J Aerosol Med Pulm Drug Deliv. 2013;26:237–47.

    CAS  Article  PubMed  Google Scholar 

  98. 98.

    Newman SP, Pitcairn GR, Hirst RH, Rankin L. Radionuclide imaging technolgies and their use in evaluating asthma drug deposition in the lungs. Adv Drug Deliv Rev. 2003;55:851–67.

    CAS  Article  PubMed  Google Scholar 

  99. 99.

    Weibel ER. Morphometry of the human lung. Berlin: Springer Verlag; 1963.

    Book  Google Scholar 

  100. 100.

    Longest PW, Vinchurkar S. Inertial deposition of aerosols in bifurcating models during steady expiratory flow. J Aerosol Sci. 2009;40:370–8.

    CAS  Article  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

Katharina Bormann and Xiangyin Wei are acknowledged for their assistance in measuring the initial size of the Novolizer DPI. Navvab Dalasm is credited with creating the alveolar model shown in Fig. 3 while at VCU. This study was supported by Award U01 FD004570 from the US FDA and Award R01 HL107333 from the National Heart, Lung, and Blood Institute. The content is solely the responsibility of the authors and does not necessarily represent the official views of the US FDA, the National Heart, Lung, and Blood Institute or the National Institutes of Health.

Author information

Affiliations

Authors

Corresponding author

Correspondence to P. Worth Longest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tian, G., Hindle, M., Lee, S. et al. Validating CFD Predictions of Pharmaceutical Aerosol Deposition with In Vivo Data. Pharm Res 32, 3170–3187 (2015). https://doi.org/10.1007/s11095-015-1695-1

Download citation

KEY WORDS

  • airway dosimetry predictions
  • computational fluid dynamics (CFD)
  • pharmaceutical aerosols
  • predictions of aerosol deposition
  • respiratory drug delivery