Skip to main content
Log in

In Vitro and In Vivo Efficacy of Self-Assembling RGD Peptide Amphiphiles for Targeted Delivery of Paclitaxel

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

The objective of this work was to compare the efficacy of self-assembling cyclic and linear RGD peptide amphiphiles as carriers for delivering paclitaxel to αvβ3 integrin overexpressing tumors.

Methods

Linear (C18-ADA5-RGD) and cyclic (C18-ADA5-cRGDfK) peptide amphiphiles were synthesized and characterized for CMC, aggregation number and micelle stability using fluorescence spectroscopy methods. Size and morphology of micelles was studied using TEM. Fluorescence polarization and confocal microscopy assays were established to compare binding and internalization of micelles. The targeting efficacy was studied in A2058 cells using cytotoxicity assay as well as in vivo in melanoma xenograft mouse model.

Results

The linear and cyclic RGD amphiphiles exhibited CMC of 25 and 8 μM, respectively, formed nano-sized spherical micelles and showed competitive binding to αvβ3 integrin protein. FITC-loaded RGD micelles rapidly internalized into A2058 melanoma cells. Paclitaxel-loaded RGD micelles exhibited higher cytotoxicity compared with free drug in A2058 cells in vitro as well as in vivo.

Conclusion

Cyclic RGD micelles exhibited better targeting efficacy but were less effective compared to linear RGD micelles as drug delivery vehicle due to lower drug solubilization capacity and lesser kinetic stability. Results from the study proved the effectiveness of self-assembling low molecular weight RGD amphiphiles as carriers for targeted delivery of paclitaxel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

C16 (in amphiphile structures):

Palmitic acid

C18 (in amphiphile structures):

Stearic acid

ADA:

8-amino-3,6-dioxaoctanoic acid

HOBT:

Hydroxybenzotriazole

HATU:

2-(1H-7-azabenzotriazol-1-yl)-1,1,3,3-tetramethyl uronium hexafluorophosphate

PyBOP:

Benzotriazol-1-yl-oxytripyrrolidinophosphonium hexafluorophosphate

DIPEA:

N, N′-Diisopropylethylamine

DIC:

N, N′-Diisopropylcarbodiimide

DCM:

Dichloromethane

DMF:

N,N′-dimethyl formamide

TFA:

Trifluoroacetic acid

TIS:

Triisopropylsilane

MALDI-TOF:

Matrix assisted laser desorption/ ionization- time of flight

CMC:

Critical micellization concentration

Nagg :

Aggregation number

TEM:

Transmission electron microscopy

κ:

Molar solubilization capacity

FRET:

Forster resonance energy transfer

DII:

1,1′-dioctadecyl-3,3,3,3′, Tetramethylindocarbocyanine perchlorate

DIO:

3,3′-dioctadecyloxacarbocyanine perchlorate

FP:

Fluorescence polarization

mP:

Milli polarization units

FITC:

Fluorescein isothiocynate

IACUC:

Institutional animal care and use committee

References

  1. de Boer-Dennert M, de Wit R, Schmitz PI, Djontono J, v Beurden V, Stoter G, et al. Patient perceptions of the side-effects of chemotherapy: the influence of 5HT3 antagonists. Br J Cancer. 1997;76(8):1055–61.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Torchilin V. Drug targeting. Eur J Pharm Sci. 2000;11(2):S81–91.

    Article  CAS  PubMed  Google Scholar 

  3. Gelderblom H, Verweij J, Nooter K, Sparreboom A. Cremophor EL: the drawbacks and advantages of vehicle selection for drug formulation. Eur J Cancer. 2001;37(13):1590–8.

    Article  CAS  PubMed  Google Scholar 

  4. Dong H, Dube N, Shu J, Seo J, Mahakian L, Ferrara K, et al. Long circulating 15 nm micelles based on amphiphilic 3-helix peptide-PEG conjugates. ACS Nano. 2012;6(6):5320–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Mizejewski J. Role of integrins in cancer: survey of expression patterns. Proc Soc Exp Bio Med. 1999;222(2):124–38.

    Article  CAS  Google Scholar 

  6. Xiong J, Stehle T, Zhang R, Frech M, Goodman SL, Arnaout MA. Crystal structure of the extracellular segment of integrin αvβ3 in complex with an Arg-Gly-Asp ligand. Science. 2002;29(5565):151–5.

    Article  Google Scholar 

  7. Allman R, Cowburn P, Mason M. In vitro and in vivo effects of a cyclic peptide with affinity for the αvβ3 integrin in human melanoma cells. Eur J Cancer. 2000;36(3):410–22.

    Article  CAS  PubMed  Google Scholar 

  8. Garanger E, Boturyn D, Dumy P. Tumor targeting with RGD peptide ligands-design of new molecular conjugates for imaging and therapy of cancers. Anticancer Agents Med Chem. 2007;7(5):552–8.

    Article  CAS  PubMed  Google Scholar 

  9. Welsh D, Smith D. Comparing dendritic and self-assembly strategies to multivalency-RGD peptide-integrin interactions. Org Biomol Chem. 2011;9(13):4795–801.

    Article  CAS  PubMed  Google Scholar 

  10. Miyamoto S, Akiyama S, Yamada K. Synergistic roles for receptor occupancy and aggregation in integrin transmembrane function. Science. 1995;267(5199):883–5.

    Article  CAS  PubMed  Google Scholar 

  11. Danhier F, Vroman B, Lecouturier N, Crokart N, Pourcelle V, Freichels H, et al. Targeting of tumor endothelium by RGD-grafted PLGA-nanoparticles loaded with paclitaxel. J Control Release. 2009;140(2):166–73.

    Article  CAS  PubMed  Google Scholar 

  12. Danhier F, Lecouturier N, Vroman B, Jérôme C, Marchand-Brynaert J, Feron O, et al. Paclitaxel-loaded PEGylated PLGA-based nanoparticles: In vitro and in vivo evaluation. J Control Release. 2009;133(1):11–7.

    Article  CAS  PubMed  Google Scholar 

  13. Wang Y, Wang X, Zhang Y, Yang S, Wang J, Zhang X, et al. RGD-modified polymeric micelles as potential carriers for targeted delivery to integrin-overexpressing tumor vasculature and tumor cells. J Drug Target. 2009;17(6):459–67.

    Article  CAS  PubMed  Google Scholar 

  14. Nasongkla N, Shuai X, Ai H, Weinberg B, Pink J, Boothman D, et al. cRGD-functionalized polymer micelles for targeted doxorubicin delivery. Angew Chem Int Ed Engl. 2004;43(46):6323–7.

    Article  CAS  PubMed  Google Scholar 

  15. Hartgerink J, Beniash E, Stupp SI. Peptide-amphiphilenanofibers: a versatile scaffold for the preparation of self-assembling materials. Proc Natl Acad Sci U S A. 2002;99(8):5133–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Accardo A, Tesauro D, Mangiapia G, Pedone C, Morelli G. Nanostructures by self-assembling peptide amphiphile as potential selective drug carriers. Biopolymers. 2007;88(2):115–21.

    Article  CAS  PubMed  Google Scholar 

  17. Cui H, Webber M, Stupp SI. Self-assembly of peptide amphiphiles: from molecules to nanostructures to biomaterials. Biopolymers. 2010;94(1):1–18.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Javali N, Raj A, Saraf P, Li X, Jasti B. Fatty acid - RGD peptide amphiphile micelles as potential paclitaxel delivery carriers to αvβ3 integrin overexpressing tumors. Pharm Res. 2012;29(12):3347–61.

    Article  CAS  PubMed  Google Scholar 

  19. Shen S, Kotamraj P, Bhattacharya S, Li X, Jasti B. Synthesis and characterization of RGD-fatty acid amphiphilic micelles as targeted delivery carriers for anticancer agents. J Drug Target. 2007;15(1):51–8.

    Article  CAS  PubMed  Google Scholar 

  20. McCusker B, Kocienski P, Boyle T, Schatzlein A. Solid-phase synthesis of c(RGDfK) derivatives: on-resin cyclisation and lysine functionalisation. Bioorg Med Chem Lett. 2002;12(4):547–9.

    Article  CAS  PubMed  Google Scholar 

  21. Wang W, Wu Q, Pasuelo M, McMurray J, Li C. Probing for integrin αvβ3 binding of RGD peptides using fluorescence polarization. Bioconjug Chem. 2005;16(3):729–34.

    Article  CAS  PubMed  Google Scholar 

  22. Raj A, Saraf P, Javali N, Li X, Jasti B. Binding and uptake of novel RGD micelles to the αvβ3 integrin receptor for targeted drug delivery. J Drug Target. 2014;22(6):518–27.

    Article  CAS  PubMed  Google Scholar 

  23. Mas-Moruno C, Rechenmacher F, Kessler H. Cilengitide: the first anti-angiogenic small molecule drug candidate. design, synthesis and clinical evaluation. anticancer agents. Med Chem. 2010;10(10):753–68.

    CAS  Google Scholar 

  24. Sezgin Z, Yuksen N, Baykara T. Preparation and characterization of polymeric micelles for solubilization of poorly soluble anticancer drugs. Eur J Pharm Biopharm. 2006;64(3):261–8.

    Article  CAS  PubMed  Google Scholar 

  25. Tummino PJ, Gafni A. Determination of the aggregation number of detergent micelles using steady-state fluorescence quenching. Biophys J. 1993;64(5):1580–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Missirlis D, Farine M, Kastantin M, Ananthanarayanan B, Neumann T, Tirell M. Linker chemistry determines secondary structure of p53(14–29) in peptide amphiphile micelles. Bioconjugate Chem. 2010;21(3):465–75.

    Article  CAS  Google Scholar 

  27. Lu J, Owen S, Stoichet M. Stability of self-assembled polymeric micelles in serum. Macromolecules. 2011;44(15):6002–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Chen CL, Hou WH, Liu IH, Hsiao G, Huang SS, Huang JS. Inhibitors of clathrin-dependent endocytosis enhance TGFβ signaling and responses. J Cell Sci. 2009;122(Pt 11):1863–71.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Shin S., Wolgamott L., Yoon S., Integrin trafficking and tumor progression, Int J Cell Biol., 2012; 2012: Article ID: 516789.

  30. McMahon H, Boucrot E. Molecular mechanism and physiological functions of clathrin-mediated endocytosis. Nat Rev Mol Cell Biol. 2011;12:517–33.

    Article  CAS  PubMed  Google Scholar 

  31. Raymond E, Hanauske A, Faivre S, Izbicka E, Clark G, Rowinsky EK, et al. Effects of prolonged versus short-term exposure paclitaxel (Taxol) on human tumor colony-forming units. Anticancer Drugs. 1997;8(4):379–85.

    Article  CAS  PubMed  Google Scholar 

  32. Cai LL, Liu P, Li X, Huang X, Ye YQ, Chen FY, et al. RGD peptide-mediated chitosan-based polymeric micelles targeting delivery for integrin-overexpressing tumor cells. Int J Nanomedicine. 2011;6:3499–508.

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Zhang L, He Y, Ma G, Song C, Son H. Paclitaxel-loaded polymeric micelles based on poly(ɛ-caprolactone)-poly(ethylene glycol)-poly(ɛ-caprolactone) triblockcopolymers:in vitro and in vivo evaluation. Nanomedicine. 2012;8(6):925–34.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

Authors would like to thank Dr. Mamoun Alhamadsheh (Department of Pharmaceutics and Medicinal Chemistry) for his inputs on fluorescence polarization assay.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhaskara Jasti.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 2345 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saraf, P., Li, X., Wrischnik, L. et al. In Vitro and In Vivo Efficacy of Self-Assembling RGD Peptide Amphiphiles for Targeted Delivery of Paclitaxel. Pharm Res 32, 3087–3101 (2015). https://doi.org/10.1007/s11095-015-1689-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-015-1689-z

KEY WORDS

Navigation