Skip to main content

Long-Acting Injectable Hormonal Dosage Forms for Contraception

Abstract

Although great efforts have been made to develop long-acting injectable hormonal contraceptives for more than four decades, few long-acting injectable contraceptives have reached the pharmaceutical market or even entered clinical trials. On the other hand, in clinical practice there is an urgent need for injectable long-acting reversible contraceptives which can provide contraceptive protection for more than 3 months after one single injection. Availability of such products will offer great flexibility to women and resolve certain continuation issues currently occurring in clinics. Herein, we reviewed the strategies exploited in the past to develop injectable hormonal contraceptive dosages including drug microcrystal suspensions, drug-loaded microsphere suspensions and in situ forming depot systems for long-term contraception and discussed the potential solutions for remaining issues met in the previous development.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

REFERENCES

  1. Newton J. Classification and comparison of oral contraceptives containing new generation progestogens. Hum Reprod Update. 1995;1(3):231–63.

    CAS  Article  PubMed  Google Scholar 

  2. Garza-Flores J, Hall PE, Perez-Palacios G. Long-acting hormonal contraceptives for women. J Steroid Biochem Mol Biol. 1991;40(4–6):697–704.

    CAS  Article  PubMed  Google Scholar 

  3. Singh M, Saxena BB, Singh R, Kaplan J, Ledger WJ. Contraceptive efficacy of norethindrone encapsulated in injectable biodegradable polydl-lactide-co-glycolide microspheres (NET-90): phase III clinical study. Adv Contracept. 1997;13:1–11.

    Article  PubMed  Google Scholar 

  4. Kulier R, Helmerhorst FM, Maitra N, Gülmezoglu AM. Effectiveness and acceptability of progestogens in combined oral contraceptives–a systematic review. Reprod Health. 2004;1:1.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kulier R et al. Effectiveness and acceptability of progestogens in combined oral contraceptives–a systematic review. Reprod Health. 2004;1(1):1.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Rosendaal F, Helmerhorst F, Vandenbroucke J. Female hormones and thrombosis. Arterioscler Thromb Vasc Biol. 2002;22(2):201–10.

    CAS  Article  PubMed  Google Scholar 

  7. Sitruk-Ware R, Nath A, Mishell DR, Jr. Contraception technology: past, present and future. Contraception. 2012.

  8. Sitruk-Ware R. Reprint of pharmacological profile of progestins. Maturitas. 2008;61(1):151–7.

    Article  PubMed  Google Scholar 

  9. Zhang Y, Li C-X, Ning M-Y, Duan X-Y, Liu Y. Preparation and evaluation of intravaginal ring containing drospirenone. Adv Pharm Sci. 2013;2013:11.

    Google Scholar 

  10. Zhang Y et al. Preparation and evaluation of intravaginal ring containing drospirenone. Adv Pharm Sci. 2013;2013:11.

    Google Scholar 

  11. Rajesh N, Rowan S. Female contraception: present and future perspectives. Curr Womens Health Rev. 2009;5(3):167–75.

    Article  Google Scholar 

  12. Potts DM, Siemens AJ. Where next with long-acting steroids? IPPF Med Bull. 1984;18(3):2–3.

    CAS  PubMed  Google Scholar 

  13. Delvadia D. Reversible long-acting contraceptives. J Am Osteopath Assoc. 1997;97(8 SUPPL. 1):S8–S12.

    Google Scholar 

  14. Rosenberg MJ, Waugh MS. Oral contraceptive discontinuation: a prospective evaluation of frequency and reasons. Am J Obstet Gynecol. 1998;179(3):577–82.

    CAS  Article  PubMed  Google Scholar 

  15. Ruminjo JK, Sekadde-Kigondu CB, Karanja JG, Rivera R, Nasution M, Nutley T. Comparative acceptability of combined and progestin-only injectable contraceptives in Kenya. Contraception. 2005;72:138–45.

    CAS  Article  PubMed  Google Scholar 

  16. Ruminjo JK et al. Comparative acceptability of combined and progestin-only injectable contraceptives in Kenya. Contraception. 2005;72(2):138–45.

    CAS  Article  PubMed  Google Scholar 

  17. Chue P. Risperidone long-acting injection. Expert Rev Neurother. 2003;3(4):435–46.

    CAS  Article  PubMed  Google Scholar 

  18. Packhaeuser CB, Schnieders J, Oster CG, Kissel T. In situ forming parenteral drug delivery systems: an overview. Eur J Pharm Biopharm. 2004;58:445–55.

    CAS  Article  PubMed  Google Scholar 

  19. Beck LR, Pope VZ, Tice TR, Gilley RM. Long-acting injectable microsphere formulation for the parenteral administration of levonorgestrel. Adv Contracept. 1985;1:119–29.

    CAS  Article  PubMed  Google Scholar 

  20. Wang SH, Zhang LC, Lin F, Sa XY, Zuo JB, Shao QX, et al. Controlled release of levonorgestrel from biodegradable poly(D, L-lactide-co-glycolide) microspheres: in vitro and in vivo studies. Int J Pharm. 2005;301:217–25.

    CAS  Article  PubMed  Google Scholar 

  21. Dhanaraju MD, RajKannan R, Selvaraj D, Jayakumar R, Vamsadhara C. Biodegradation and biocompatibility of contraceptive-steroid-loaded poly (dl-lactide-co-glycolide) injectable microspheres: in vitro and in vivo study. Contraception. 2006;74:148–56.

    CAS  Article  PubMed  Google Scholar 

  22. Sun Y, Wang J, Zhang X, Zhang Z, Zheng Y, Chen D, et al. Synchronic release of two hormonal contraceptives for about one month from the PLGA microspheres: in vitro and in vivo studies. J Control Release. 2008;129:192–9.

    CAS  Article  PubMed  Google Scholar 

  23. Machado SR, Lunardi LO, Tristao AP, Marchetti JM. Preparation and characterization of D, L-PLA loaded 17-beta-Estradiol valerate by emulsion/evaporation methods. J Microencapsul. 2009;26:202–13.

    CAS  Article  PubMed  Google Scholar 

  24. Machado SR et al. Preparation and characterization of D, L-PLA loaded 17-beta-Estradiol valerate by emulsion/evaporation methods. J Microencapsul. 2009;26(3):202–13.

    CAS  Article  PubMed  Google Scholar 

  25. Trantolo D, Hsu Y-Y, Gresser J, Wise D, Moo-Young A. Biodegradable systems for long-acting nesterone. In: Wise D, editor. Handbook of pharmaceutical controlled release technology. New York: Marcel Dekker, Inc.; 2000.

    Google Scholar 

  26. Trantolo D et al. Biodegradable systems for long-acting nesterone. In: Wise D, editor. Handbook of pharmaceutical controlled release technology. New York: Marcel Dekker, Inc; 2000.

    Google Scholar 

  27. Rivera R, Alvarado G, Aldaba CFS, Hernandez A. Norethisterone contraceptive microspheres. J Steroid Biochemistry. 1987;27:1003–7.

    CAS  Article  Google Scholar 

  28. Grubb GS, Welch JD, Cole L, Goldsmith A, Rivera R. A comparative evaluation of the safety and contraceptive effectiveness of 65 mg and 100 mg of 90-day norethindrone (NET) injectable microspheres: a multicenter study. Fertil Steril. 1989;51:803–10.

    CAS  PubMed  Google Scholar 

  29. Grubb GS et al. A comparative evaluation of the safety and contraceptive effectiveness of 65 mg and 100 mg of 90-day norethindrone (NET) injectable microspheres: a multicenter study. Fertil Steril. 1989;51(5):803–10.

    CAS  PubMed  Google Scholar 

  30. Kempe S, Mäder K. In situ forming implants—an attractive formulation principle for parenteral depot formulations. J Control Release. 2012;161(2):668–79.

    CAS  Article  PubMed  Google Scholar 

  31. Junkmann K. Long-acting steroids in reproduction. Recent Prog Horm Res. 1957;13:389–419.

    CAS  PubMed  Google Scholar 

  32. Shearman RP. The development of depot contraceptives. J Steroid Biochemistry. 1975;6(6):899–902.

    CAS  Article  Google Scholar 

  33. Depo-Provera® Available from: http://labeling.pfizer.com/ShowLabeling.aspx?id=522.

  34. Depo-subQ Provera 104® Available from: http://dailymed.nlm.nih.gov/dailymed/archives/fdaDrugInfo.cfm?archiveid=11569.

  35. Peralta O. Injectable hormonal contraceptives: an overview. Gynaecol Forum. 2000;5(1):p. http://www.medforum.nl/gynfo/leading_article1.asp.

  36. Eunice Kennedy Shriver National Institute of Child Health and Human Development (NIHCD), A Phase I Study to Evaluate the Pharmacokinetic and Pharmacodynamic Profile of a Single Injection of Levonorgestel Butanoate for Female Contraception. In: ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US), 2014 May 12 [cited 2014 Sep 7]. (Available from: http://clinicaltrials.gov/show/NCT02173808 NLM Identifier: NCT02173808.).

  37. Conrad. http://www.conrad.org/contraception-grid.html. 2012.

  38. Conrad. 2012. http://www.conrad.org/contraception-grid.html.

  39. Okada H. One- and three-month release injectable microspheres of the LH-RH superagonist leuprorelin acetate. Adv Drug Deliv Rev. 1997;28(1):43–70.

    CAS  Article  PubMed  Google Scholar 

  40. Putney SD, Burke PA. Improving protein therapeutics with sustained-release formulations. Nat Biotechnol. 1998;16:153.

    CAS  Article  PubMed  Google Scholar 

  41. Freiberg S, Zhu XX. Polymer microspheres for controlled drug release. Int J Pharm. 2004;282:1–18.

    CAS  Article  PubMed  Google Scholar 

  42. Freiberg S, Zhu XX. Polymer microspheres for controlled drug release. Int J Pharm. 2004;282(1–2):1–18.

    CAS  Article  PubMed  Google Scholar 

  43. Clarck SL, Crowley AJ, Schmidt PG, Donoghue AR, Piché CA. Long-term delivery of ivermectin by use of poly(D, L-lactic-co-glycolic)acid microparticles in dogs. Am J Vet Res. 2004;65:752–7.

    Article  Google Scholar 

  44. Berkland C, Kim K, Pack DW. PLG microsphere size controls drug release rate through several competing factors. Pharm Res. 2003;20:1055–62.

    CAS  Article  PubMed  Google Scholar 

  45. Berkland C, Kim K, Pack DW. PLG microsphere size controls drug release rate through several competing factors. Pharm Res. 2003;20(7):1055–62.

    CAS  Article  PubMed  Google Scholar 

  46. Berkland C, King M, Cox A, Kim K, Pack DW. Precise control of PLG microsphere size provides enhanced control of drug release rate. J Control Release. 2002;82:137–47.

    CAS  Article  PubMed  Google Scholar 

  47. Berkland C et al. Precise control of PLG microsphere size provides enhanced control of drug release rate. J Control Release. 2002;82(1):137–47.

    CAS  Article  PubMed  Google Scholar 

  48. Buntner B, Nowak M, Kasperczyk J, Ryba M, Grieb P, Walski M, et al. The application of microspheres from the copolymers of lactide and ε-caprolactone to the controlled release of steroids. J Control Release. 1998;56:159–67.

    CAS  Article  PubMed  Google Scholar 

  49. Buntner B et al. The application of microspheres from the copolymers of lactide and ε-caprolactone to the controlled release of steroids. J Control Release. 1998;56(1–3):159–67.

    CAS  Article  PubMed  Google Scholar 

  50. Tice TR, Gilley RM. Preparation of injectable controlled-release microcapsules by a solvent-evaporation process. J Control Release. 1985;2:343–52.

    CAS  Article  Google Scholar 

  51. Dhanaraju MD, Jayakumar R, Vamsadhara C. Influence of manufacturing parameters on development of contraceptive steroid loaded injectable microspheres. Chem Pharm Bull. 2004;52:976–9.

    CAS  Article  PubMed  Google Scholar 

  52. Song CX, Sun HF, Feng XD. Microspheres of biodegradable block copolymer for long-acting controlled delivery of contraceptives. Polym J. 1987;19:485–91.

    CAS  Article  Google Scholar 

  53. Gu ZW, Ye WP, Yang JY, Li YX, Chen XL, Zhong GW, et al. Biodegradable block copolymer matrices for long-acting contraceptives with constant release. J Control Release. 1992;22:3–14.

    CAS  Article  Google Scholar 

  54. Gu ZW et al. Biodegradable block copolymer matrices for long-acting contraceptives with constant release. J Control Release. 1992;22(1):3–14.

    CAS  Article  Google Scholar 

  55. Dhanaraju MD, Gopinath D, Ahmed MR, Jayakumar R, Vamsadhara C. Characterization of polymeric poly(ε-caprolactone) injectable implant delivery system for the controlled delivery of contraceptive steroids. J Biomed Mater Res A. 2006;76:63–72.

    Article  PubMed  Google Scholar 

  56. Dhanaraju MD et al. Characterization of polymeric poly(ε-caprolactone) injectable implant delivery system for the controlled delivery of contraceptive steroids. J Biomed Mater Res A. 2006;76(1):63–72.

    Article  PubMed  Google Scholar 

  57. Latha MS, Lal AV, Kumary TV, Sreekumar R, Jayakrishnan A. Progesterone release from glutaraldehyde cross-linked casein microspheres: in vitro studies and in vivo response in rabbits. Contraception. 2000;61:329–34.

    CAS  Article  PubMed  Google Scholar 

  58. Latha MS et al. Progesterone release from glutaraldehyde cross-linked casein microspheres: in vitro studies and in vivo response in rabbits. Contraception. 2000;61(5):329–34.

    CAS  Article  PubMed  Google Scholar 

  59. Puthli S, Vavia P. Gamma irradiated micro system for long-term parenteral contraception: an alternative to synthetic polymers. Eur J Pharm Sci. 2008;35(4):307–17.

    CAS  Article  PubMed  Google Scholar 

  60. Jameela SR et al. Progesterone-loaded chitosan microspheres: a long acting biodegradable controlled delivery system. J Control Release. 1998;52(1–2):17–24.

    CAS  Article  PubMed  Google Scholar 

  61. Lu B, Guo RL, Liu C. Studies on an injection of microencapsulated levonorgestrel. In: Whateley TL, editor. Microencapsulation of drugs. UK: Harwood Academic Publishers; 1992. p. 103–21.

    Google Scholar 

  62. Lu B, Wang Z, Yang H. Long-acting delivery microspheres of levo-norgestrolpoly (3-hydroxybutyrate): their preparation, characterization and contraceptive tests on mice. J Microencapsul. 2001;18:55–64.

    Article  PubMed  Google Scholar 

  63. Zhong-wei G, Wei-ping Y, Ji-yuan Y, You-xin L, Xian-li C, Ge-wen Z, et al. Biodegradable block copolymer matrices for long-acting contraceptives with constant release. J Control Release. 1992;22:3–14.

    Article  Google Scholar 

  64. Zhong-wei G et al. Biodegradable block copolymer matrices for long-acting contraceptives with constant release. J Control Release. 1992;22(1):3–14.

    Article  Google Scholar 

  65. Schindler A, et al. Biodegradable polymers for sustained drug delivery. In Contemporary topics in polymer science. Springer; 1977. p. 251–289.

  66. Pitt CG et al. Sustained drug delivery systems. I. The permeability of poly (ϵ‐caprolactone), poly (DL‐lactic acid), and their copolymers. J Biomed Mater Res. 1979;13(3):497–507.

    CAS  Article  PubMed  Google Scholar 

  67. Li YX, Feng XD. Biodegradable polymeric matrix for long‐acting and zero‐order release drug delivery systems. In: Makromolekulare Chemie. Macromolecular Symposia. 1990. Wiley Online Library.

  68. Beck LR, Pope VZ. Long-acting injectable norethisterone contraceptive system: review of clinical studies. Res Front Fertil Regul RFFR / PARFR. 1984;3(2):1–10.

    Google Scholar 

  69. Beck LR, Ramos RA, Flowers Jr CE. Clinical evaluation of injectable biodegradable contraceptive system. Am J Obstet Gynecol. 1981;140(7):799–806.

    CAS  PubMed  Google Scholar 

  70. Beck LR, Cowsar D. Biodegradable microsphere contraceptive system. Acta Eur Fertil. 1980;11(2):139–50.

    CAS  PubMed  Google Scholar 

  71. Huang X, Chestang BL, Brazel CS. Minimization of initial burst in poly(vinyl alcohol) hydrogels by surface extraction and surface-preferential crosslinking. Int J Pharm. 2002;248:183–92.

    CAS  Article  PubMed  Google Scholar 

  72. Wu L, Brazel CS. Modifying the release of proxyphylline from PVA hydrogels using surface crosslinking. Int J Pharm. 2008;349:144–51.

    CAS  Article  PubMed  Google Scholar 

  73. Wu L, Brazel CS. Modifying the release of proxyphylline from PVA hydrogels using surface crosslinking. Int J Pharm. 2008;349(1–2):144–51.

    CAS  Article  PubMed  Google Scholar 

  74. Wu J, Kong T, Yeung KWK, Shum HC, Cheung KMC, Wang L, et al. Fabrication and characterization of monodisperse PLGA-alginate core-shell microspheres with monodisperse size and homogeneous shells for controlled drug release. Acta Biomater. 2013;9:7410–9.

    CAS  Article  PubMed  Google Scholar 

  75. Cong H, Beck LR. Preparation and pharmacokinetic evaluation of a modified long-acting injectable norethisterone microsphere. Adv Contracept. 1991;7:251–6.

    CAS  Article  PubMed  Google Scholar 

  76. Meyer RF, Rogers WB, McClendon MT, Crocker JC. Producing monodisperse drug-loaded polymer microspheres via cross-flow membrane emulsification: the effects of polymers and surfactants. Langmuir. 2010;26:14479–87.

    CAS  Article  PubMed  Google Scholar 

  77. Meyer RF et al. Producing monodisperse drug-loaded polymer microspheres via cross-flow membrane emulsification: the effects of polymers and surfactants. Langmuir. 2010;26(18):14479–87.

    CAS  Article  PubMed  Google Scholar 

  78. Akamatsu K et al. Preparation of monodisperse chitosan microcapsules with hollow structures using the spg membrane emulsification technique. Langmuir. 2010;26(18):14854–60.

    CAS  Article  PubMed  Google Scholar 

  79. Zhao Y et al. Facile preparation of fluorescence-encoded microspheres based on microfluidic system. J Colloid Interface Sci. 2010;352(2):337–42.

    CAS  Article  PubMed  Google Scholar 

  80. Sugiura S, Nakajima M, Seki M. Preparation of monodispersed polymeric microspheres over 50 μm employing microchannel emulsification. Ind Eng Chem Res. 2002;41(16):4043–7.

    CAS  Article  Google Scholar 

  81. Freitas S, Merkle HP, Gander B. Microencapsulation by solvent extraction/evaporation: reviewing the state of the art of microsphere preparation process technology. J Control Release. 2005;102(2):313–32.

    CAS  Article  PubMed  Google Scholar 

  82. Berkland C, Kim K, Pack DW. Fabrication of PLG microspheres with precisely controlled and monodisperse size distributions. J Control Release. 2001;73:59–74.

    CAS  Article  PubMed  Google Scholar 

  83. Berkland C, Kim K, Pack DW. Fabrication of PLG microspheres with precisely controlled and monodisperse size distributions. J Control Release. 2001;73(1):59–74.

    CAS  Article  PubMed  Google Scholar 

  84. Cardot JM, Davit BM. In vitro-in vivo correlations: tricks and traps. AAPS J. 2012;14(3):491–9.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  85. Pollauf EJ, Kim KK, Pack DW. Small-molecule release from poly(D, L-lactide)/poly(D, L-lactide-co- glycolide) composite microparticles. J Pharm Sci. 2005;94:2013–22.

    CAS  Article  PubMed  Google Scholar 

  86. Pollauf EJ, Kim KK, Pack DW. Small-molecule release from poly(D, L-lactide)/poly(D, L-lactide-co- glycolide) composite microparticles. J Pharm Sci. 2005;94(9):2013–22.

    CAS  Article  PubMed  Google Scholar 

  87. Dunn RL, Yewey GL, Fujita SM, Josephs KR, Whitman SL, Southard GL, et al. Sustained release of cisplatin in dogs from an injectable implant delivery system. J Bioact Compat Polym. 1996;11:286–300.

    CAS  Google Scholar 

  88. Eliaz RE, Wallach D, Kost J. Delivery of soluble tumor necrosis factor receptor from in-situ forming PLGA implants: in-vivo. Pharm Res. 2000;17:1546–50.

    CAS  Article  PubMed  Google Scholar 

  89. Johansson AK, Linse P, Piculell L, Engström S. Phase behavior of the quaternary poly(DL-lactide-co-glycolide)/monoolein/1-methyl-2-pyrrolidinone/water system: an experimental and theoretical study. J Phys Chem B. 2001;105:12157–64.

    CAS  Article  Google Scholar 

  90. Johansson AK et al. Phase behavior of the quaternary poly(DL-lactide-co-glycolide)/monoolein/1-methyl-2-pyrrolidinone/water system: an experimental and theoretical study. J Phys Chem B. 2001;105(48):12157–64.

    CAS  Article  Google Scholar 

  91. Dong S et al. An in situ-forming, solid lipid/PLGA hybrid implant for long-acting antipsychotics. Soft Matter. 2011;7(12):5873–8.

    CAS  Article  Google Scholar 

  92. Başaran B, Bozkir A. Thermosensitive and pH induced in situ ophthalmic gelling system for ciprofloxacin hydrochloride: hydroxypropyl-β-cyclodextrin complex. Acta Pol Pharm Drug Res. 2012;69:1137–47.

    Google Scholar 

  93. Gupta SK, Singhvi IJ. Sustained ophthalmic delivery of moxifloxacin hydrochloride from an pH triggered in situ gelling system. Res J Pharm Technol. 2012;5:1538–42.

    Google Scholar 

  94. Royals MA, Fujita SM, Yewey GL, Rodriguez J, Schultheiss PC, Dunn RL. Biocompatibility of a biodegradable in situ forming implant system in rhesus monkeys. J Biomed Mater Res. 1999;45:231–9.

    CAS  Article  PubMed  Google Scholar 

  95. Royals MA et al. Biocompatibility of a biodegradable in situ forming implant system in rhesus monkeys. J Biomed Mater Res. 1999;45(3):231–9.

    CAS  Article  PubMed  Google Scholar 

  96. Astaneh R et al. Effects of ethyl benzoate on performance, morphology, and erosion of PLGA implants formed in situ. Adv Polym Technol. 2008;27(1):17–26.

    CAS  Article  Google Scholar 

  97. Pandya TP, Modasiya MK, Patel VM. Sustained ophthalmic delivery of ciprofloxacin hydrochloride from an ion-activated in situ gelling system. Der Pharm Lett. 2011;3:404–10.

    CAS  Google Scholar 

  98. Dunn RL, English JP, Cowsar DR, Vanderbilt DP. Biodegradable in situ forming implants and methods of producing the same. In: USA, editor. USA Patent 4,938,763. USA Patent 4,938,7631990.

  99. Dunn RL, English JP, Cowsar DR, Vanderbilt DP. Biodegradable in situ forming implants and methods of producing the same. In: USA Patent 4,938,763, USA, Editor. 1990: USA Patent 4,938,763.

  100. Parent M et al. Plga in situ implants formed by phase inversion: critical physicochemical parameters to modulate drug release. J Control Release. 2013;172(1):292–304.

    CAS  Article  PubMed  Google Scholar 

  101. Thosar SS. Controlled release of a contraceptive steroid from biodegradable and injectable formulations: in vitro and in vivo evaluations. The University of Tennessee Health Science Center, Thesis. 1997.

  102. Thosar SS, Shukla AJ, Crowley WR, Johnson JR. Evaluation of the effects of varying formulation factors on the in vitro release of levonorgestrel from a biodegradable injectable drug delivery system. Pharm Res. 1996;13S–298.

  103. Gao Z, Shukla AJ, Johnson JR, Crowley WR. Controlled release of a contraceptive steroid from biodegradable and injectable gel formulations: in vitro evaluation. Pharm Res. 1995;12:857–63.

    CAS  Article  PubMed  Google Scholar 

  104. Tell L, Shukla A, Munson L, Thosar S, Kass P, Stanton R, et al. A comparison of the effects of slow release, injectable levonorgestrel and depot medroxyprogesterone acetate on egg production in Japanese quail (Coturnix coturnix japonica). J Avian Med Surg. 1999;13:23–31.

    Google Scholar 

  105. Tell L et al. A comparison of the effects of slow release, injectable levonorgestrel and depot medroxyprogesterone acetate on egg production in Japanese quail (Coturnix coturnix japonica). J Avian Med Surg. 1999;13(1):23–31.

    Google Scholar 

  106. Looper S et al. Efficacy of levonorgestrel when administered as an irradiated, slow-release injectable matrix for feline contraception. Zoo Biol. 2001;20(5):407–21.

    CAS  Article  Google Scholar 

  107. Wheaton CJ et al. The use of long acting subcutaneous levonorgestrel (LNG) gel depot as an effective contraceptive option for cotton-top tamarins (Saguinus oedipus). Zoo Biol. 2011;30(5):498–522.

    CAS  Article  PubMed  Google Scholar 

  108. Yewey GL, Krinick NL, Dunn RL, Radomsky ML, Brouwer G, Tipton AJ. Liquid delivery compositions. In: US Patent 5780044, U. Patent, Editor. USA; 1998.

  109. Chen S, Singh J. In vitro release of levonorgestrel from phase sensitive and thermosensitive smart polymer delivery systems. Pharm Dev Technol. 2005;10(2):319–25.

    CAS  Article  PubMed  Google Scholar 

  110. Brodbeck KJG-D, Ann T, Shen TT-I. Gel composition and methods. In: US Patent 6130200, U. patent, Editor. USA; 2000.

  111. Bowers R. Longer-acting method that is injectable probed. Contracept Technol Updat. 2013;34(3):28–9.

    Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

We thank our former graduates Dr. Zhi-Hui Gao, Dr. Shilpa Thosar and Dr. Yichun Sun, our former research associate Dr. Wen Qu, and our collaborators William R. Crowley, James F. Reger, Catharine J. Wheaton, Donald Neiffer, Bill Lasley, and Gary Anderson for their efforts in our studies on in situ forming depots for contraception at UTHSC. We also thank Dr. Wen Qu for his discussion and comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao L. Lowe.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wu, L., Janagam, D.R., Mandrell, T.D. et al. Long-Acting Injectable Hormonal Dosage Forms for Contraception. Pharm Res 32, 2180–2191 (2015). https://doi.org/10.1007/s11095-015-1686-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-015-1686-2

KEY WORDS

  • contraception
  • in situ forming depot systems
  • microcrystals
  • microspheres
  • steroidal progestogens