Pharmaceutical Research

, Volume 32, Issue 8, pp 2764–2774 | Cite as

Nano-Targeted Delivery of Toremifene, an Estrogen Receptor-α Blocker in Prostate Cancer

  • Waseem Hariri
  • Thangirala Sudha
  • Dhruba J. Bharali
  • Huadong Cui
  • Shaker A. Mousa
Research Paper

ABSTRACT

Purpose

Estrogen Receptor-α (ERα) expression is increased in prostate cancer and acts as an oncogene. We propose that blocking of estrogen hormone binding to ERα using the ERα blocker toremifene will reduce the tumorigenicity of prostate cancer, and nano-targeted delivery of toremifene will improve anticancer efficacy. We report the synthesis and use in an orthotopic mouse model of PLGA-PEG nanoparticles encapsulating toremifene and nanoparticles encapsulating toremifene that are also conjugated to anti-PSMA for targeted prostate tumor delivery.

Methods

Human prostate cancer cell line PC3M and a nude mouse model were used to test efficacy of nano-targeted and nano-encapsulated toremifene versus free toremifene on the growth and differentiation of tumor cells.

Results

Treatment with free toremifene resulted in a significant reduction in growth of prostate tumor and proliferation, and its nano-targeting resulted in greater reduction of prostate tumor growth, greater toremifene tumor uptake, and enhanced tumor necrosis. Tumors from animals treated with nano-encapsulated toremifene conjugated with anti-PSMA showed about a 15-fold increase of toremifene compared to free toremifene.

Conclusions

Our data provide evidence that blocking ERα by toremifene and targeting prostate cancer tissues with anti-PSMA antibody on the nanoparticles’ surface repressed the tumorigenicity of prostate cancer cells in this mouse model.

KEY WORDS

anti-PSMA antibody estrogen receptor-α blocker nanomedicine nano-targeted therapy prostate cancer 

Abbreviations

ERα

Estrogen receptor alpha

ERβ

Estrogen receptor beta

HGPIN

High Grade Prostatic Intraepithelial Hyperplasia

MTT

3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide

PEG

Poly (ethylene glycol)

PLGA

Poly (lactic-co-glycolic acid)

PSMA

Prostate specific membrane antigen

SERM

Selective estrogen receptor modulator

References

  1. 1.
    American Cancer Society. Cancer Facts & Figures 2014. 2014 September 10. Available from: http://www.cancer.org/acs/groups/content/@research/documents/webcontent/acspc-042151.pdf.
  2. 2.
    Siegel R, Naishadham D, Jemal A. Cancer statistics, 2012. CA Cancer J Clin. 2012;62(1):10–29.PubMedCrossRefGoogle Scholar
  3. 3.
    Khadige M, Peiffert D, Supiot S. What is the level of evidence of new techniques in prostate cancer radiotherapy? Cancer Radiother. 2014;18(5–6):501–8.PubMedCrossRefGoogle Scholar
  4. 4.
    Fizazi K, Scher HI, Miller K, Basch E, Sternberg CN, Cella D, et al. Effect of enzalutamide on time to first skeletal-related event, pain, and quality of life in men with castration-resistant prostate cancer: results from the randomised, phase 3 AFFIRM trial. Lancet Oncol. 2014;15(10):1147–56.PubMedCrossRefGoogle Scholar
  5. 5.
    Stewart SB, Cheville JC, Sebo TJ, Frank I, Boorjian SA, Thompson RH, et al. Gleason grading after neoadjuvant hormonal therapy retains prognostic value for systemic progression following radical prostatectomy. Prostate Cancer Prostatic Dis. 2014;17(4):332–7.PubMedCrossRefGoogle Scholar
  6. 6.
    Ziehr DR, Chen MH, Zhang D, Braccioforte MH, Moran BJ, Mahal BA, et al. Association of androgen deprivation therapy with excess cardiac-specific mortality in men with prostate cancer. BJU Int. 2014. doi:10.1111/bju.12905.PubMedGoogle Scholar
  7. 7.
    Lee HY, Wu WJ, Huang CH, Chou YH, Huang CN, Lee YC, et al. Clinical predictor of survival following docetaxel-based chemotherapy. Oncol Lett. 2014;8(4):1788–92.PubMedCentralPubMedGoogle Scholar
  8. 8.
    Gordon RR, Wu M, Huang CY, Harris WP, Sim HG, Lucas JM, et al. Chemotherapy-induced monoamine oxidase expression in prostate carcinoma functions as a cytoprotective resistance enzyme and associates with clinical outcomes. PLoS One. 2014;9(9):e104271.PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Shigeta K, Kosaka T, Yazawa S, Yasumizu Y, Mizuno R, Nagata H, et al. Predictive factors for severe and febrile neutropenia during docetaxel chemotherapy for castration-resistant prostate cancer. Int J Clin Oncol. 2014. doi:10.1007/s10147-014-0746-7.Google Scholar
  10. 10.
    LaRocque J, Bharali DJ, Mousa SA. Cancer detection and treatment: the role of nanomedicines. Mol Biotechnol. 2009;42(3):358–66.PubMedCrossRefGoogle Scholar
  11. 11.
    Raghow S, Hooshdaran MZ, Katiyar S, Steiner MS. Toremifene prevents prostate cancer in the transgenic adenocarcinoma of mouse prostate model. Cancer Res. 2002;62(5):1370–6.PubMedGoogle Scholar
  12. 12.
    Mousa SA, Bharali DJ. Nanotechnology-based detection and targeted therapy in cancer: nano-bio paradigms and applications. Cancers. 2011;3(3):2888–903.PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Holzmann C, Kilch T, Kappel S, Armbruster A, Jung V, Stockle M, et al. ICRAC controls the rapid androgen response in human primary prostate epithelial cells and is altered in prostate cancer. Oncotarget. 2013;4(11):2096–107.PubMedCentralPubMedGoogle Scholar
  14. 14.
    Sokoloff RL, Norton KC, Gasior CL, Marker KM, Grauer LS. A dual-monoclonal sandwich assay for prostate-specific membrane antigen: levels in tissues, seminal fluid and urine. Prostate. 2000;43(2):150–7.PubMedCrossRefGoogle Scholar
  15. 15.
    Ristau BT, O'Keefe DS, Bacich DJ. The prostate-specific membrane antigen: lessons and current clinical implications from 20 years of research. Urol Oncol. 2013;32(3):272–9.PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Troyer JK, Beckett ML, Wright Jr GL. Detection and characterization of the prostate-specific membrane antigen (PSMA) in tissue extracts and body fluids. Int J Cancer. 1995;62(5):552–8.PubMedCrossRefGoogle Scholar
  17. 17.
    Cao KY, Xu L, Zhang DM, Zhang XM, Zhang T, He X, et al. New alternatively spliced variant of prostate-specific membrane antigen PSM-E suppresses the proliferation, migration and invasiveness of prostate cancer cells. Int J Oncol. 2012;40(6):1977–85.PubMedGoogle Scholar
  18. 18.
    Su SL, Huang IP, Fair WR, Powell CT, Heston WD. Alternatively spliced variants of prostate-specific membrane antigen RNA: ratio of expression as a potential measurement of progression. Cancer Res. 1995;55(7):1441–3.PubMedGoogle Scholar
  19. 19.
    Akhtar NH, Pail O, Saran A, Tyrell L, Tagawa ST. Prostate-specific membrane antigen-based therapeutics. Adv Urol. 2012;2012:Article ID 973820.Google Scholar
  20. 20.
    Chang SS. Overview of prostate-specific membrane antigen. Rev Urol. 2004;6 Suppl 10:S13–8.PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Bonkhoff H, Berges R. The evolving role of oestrogens and their receptors in the development and progression of prostate cancer. Eur Urol. 2009;55(3):533–42.PubMedCrossRefGoogle Scholar
  22. 22.
    Price D, Stein B, Sieber P, Tutrone R, Bailen J, Goluboff E, et al. Toremifene for the prevention of prostate cancer in men with high grade prostatic intraepithelial neoplasia: results of a double-blind, placebo controlled, phase IIB clinical trial. J Urol. 2006;176(3):965–70. discussion 970–961.PubMedCrossRefGoogle Scholar
  23. 23.
    Matthews J, Gustafsson JA. Estrogen signaling: a subtle balance between ER alpha and ER beta. Mol Interv. 2003;3(5):281–92.PubMedCrossRefGoogle Scholar
  24. 24.
    Bharali DJ, Yalcin M, Davis PJ, Mousa SA. Tetraiodothyroacetic acid-conjugated PLGA nanoparticles: a nanomedicine approach to treat drug-resistant breast cancer. Nanomedicine. 2013;8(12):1943–54.PubMedCrossRefGoogle Scholar
  25. 25.
    Cho HS, Dong Z, Pauletti GM, Zhang J, Xu H, Gu H, et al. Fluorescent, superparamagnetic nanospheres for drug storage, targeting, and imaging: a multifunctional nanocarrier system for cancer diagnosis and treatment. ACS Nano. 2010;4(9):5398–404.PubMedCrossRefGoogle Scholar
  26. 26.
    Graf N, Bielenberg DR, Kolishetti N, Muus C, Banyard J, Farokhzad OC, et al. alpha(V)beta(3) integrin-targeted PLGA-PEG nanoparticles for enhanced anti-tumor efficacy of a Pt(IV) prodrug. ACS Nano. 2012;6(5):4530–9.PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Bansal G, Maddhesia PK, Bansal Y. MS2/TOF and LC-MS/TOF studies on toremifene to characterize its forced degradation products. Analyst. 2011;136(24):5218–28.PubMedCrossRefGoogle Scholar
  28. 28.
    Mazzarino M, Fiacco I, de la Torre X, Botre F. A mass spectrometric approach for the study of the metabolism of clomiphene, tamoxifen and toremifene by liquid chromatography time-of-flight spectroscopy. Eur J Mass Spectrom. 2008;14(3):171–80.CrossRefGoogle Scholar
  29. 29.
    Sumantran VN. Cellular chemosensitivity assays: an overview. Methods Mol Biol. 2011;731:219–36.PubMedCrossRefGoogle Scholar
  30. 30.
    Gao X, Yang L, Petros JA, Marshall FF, Simons JW, Nie S. In vivo molecular and cellular imaging with quantum dots. Curr Opin Biotechnol. 2005;16(1):63–72.PubMedCrossRefGoogle Scholar
  31. 31.
    Kim IY, Kim BC, Seong DH, Lee DK, Seo JM, Hong YJ, et al. Raloxifene, a mixed estrogen agonist/antagonist, induces apoptosis in androgen-independent human prostate cancer cell lines. Cancer Res. 2002;62(18):5365–9.PubMedGoogle Scholar
  32. 32.
    Lopes AD, Davis WL, Rosenstraus MJ, Uveges AJ, Gilman SC. Immunohistochemical and pharmacokinetic characterization of the site-specific immunoconjugate CYT-356 derived from antiprostate monoclonal antibody 7E11-C5. Cancer Res. 1990;50(19):6423–9.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Waseem Hariri
    • 1
  • Thangirala Sudha
    • 1
  • Dhruba J. Bharali
    • 1
  • Huadong Cui
    • 1
  • Shaker A. Mousa
    • 1
  1. 1.The Pharmaceutical Research InstituteAlbany College of Pharmacy and Health SciencesRensselaerUSA

Personalised recommendations