Allcock HR. Inorganic polymers. New York: Allyn and Bacon; 1995.
Google Scholar
Potin PH, Jeager RD. Polyphosphazenes: synthesis, structure, properties, application. Eur Polym J. 1991;4(5):341–58.
Article
Google Scholar
Allcock HR. Chemistry and applications of polyphosphazenes. Wiley: Hoboken; 2003.
Google Scholar
Allcock HR. Recent developments in polyphosphazene materials science. Curr Op Solid St. 2006;10:231–40.
CAS
Article
Google Scholar
Luten J, Steenbergen VMJ, Lok MC, Graaff DAM, Nostrum VCF, Talsma H, et al. Degradable PEG-folate coated poly(DMAEA-co-BA)phosphazene-based polyplexes exhibit receptor-specific gene expression. Eur J Pharm Sci. 2008;33:241–51.
CAS
PubMed
Article
Google Scholar
Allcock HR, Steely LB, Singh A. Hydrophobic and superhydrophobic surfaces from polyphosphazenes. Polym Int. 2006;55:621–5.
CAS
Article
Google Scholar
Sethuraman S, Nair LS, El-Amin S, Nguyen MT, Singh A, Krogman N, et al. Mechanical properties and osteocompatibility of novel biodegradable alanine based polyphosphazenes: Side group effects. Acta Biomater. 2010;6:1931–7.
CAS
PubMed Central
PubMed
Article
Google Scholar
Ottenbrite RA, Albertsson AC, Scott G, Vert M, Feijen J, Albertsson A, Scott G, Chiellini E. Biodegradable Polymers and Plastics. 1992;73–92.
Siepmanna J, Gpferichb A. Mathematical modeling of bioerodible, polymeric drug delivery system. Adv Drug Deliv Rev. 2001;48:229.
Article
Google Scholar
Laurencin CT, Morris CD, Jacques HP, Schwartz ER, Keaton AR, Zou L. Osteoblast culture on bioerodible polymers: studies of initial cell adhesion and spread. Polym Adv Tech. 1992;3:359–64.
CAS
Article
Google Scholar
Lee SM, Chun CJ, Heo JY, Song SC. Injectable and thermosensitive poly(organophosphazene) hydrogels for a 5-fluorouracil delivery. J Appl Polym Sci. 2009;113:3831–9.
CAS
Article
Google Scholar
Kang GD, Heo JY, Jung SB, Song SC. Controlling the thermosensitive gelation properties of poly(organophosphazenes) by blending. Macromol Rapid Commun. 2005;26:1615–8.
CAS
Article
Google Scholar
Sharma R, Rawal RK, Malhotra M, Sharma AK, Bhardwaj TR. Design, synthesis and ex-vivo release studies of colon-specific polyphosphazene–anticancer drug conjugates. Bioorg Med Chem. 2014;22:1104–14.
CAS
PubMed
Article
Google Scholar
Singla N, Sharma R, Bhardwaj TR. Design, synthesis and in-vitro evaluation of polymer-linked prodrug of methotrexate for the targeted delivery to the colon. Lett Drug Des Discov. 2014;11:601–10.
CAS
Article
Google Scholar
Murthy RSR, Sapariya B, Solanki A. Sustained release implants of chloroquine phosphate for posible use in chemoprophylaxix of malaria. Indian J Exp Biol. 2001;39:902–5.
PubMed
Google Scholar
Aditya NP, Patankar S, Madhusudhan B, Murthy RSR, Souto EB. Arthemeter-loaded lipid nanoparticles produced by modified thin-film hydration: Pharmacokinetics, toxicological and in vivo anti-malarial activity. Eur J Pharm Sci. 2010;40:448–55.
CAS
PubMed
Article
Google Scholar
Kumar S, Singh RK, Sharma R, Murthy RSR, Bhardwaj TR. Design, synthesis and evaluation of antimalarial potential of polyphosphazene linked combination therapy of primaquine and dihydroartemisinin. Eur J Pharm Sci. 2014. doi:10.1016/j.ejps.2014.09.023.
Google Scholar
Sohn YS, Cho YH, Baek H, Jung OS. Synthesis and properties of low molecular weight polyphosphazenes. Macromolecules. 1995;28:7566–8.
CAS
Article
Google Scholar
Gumusderelioglu M, Gur A. Synthesis, characterization: in vitro degradation and cytotoxicity of poly[bis(ethyl-4-aminobutyro)phosphazene]. React Funct Polym. 2002;52:71–80.
CAS
Article
Google Scholar
Huang KJ, Zhu CH. The production and characteristics of solid lipid nanoparticles. Biomaterials. 2003;24:1781–5.
PubMed
Article
Google Scholar
Peters W, Robinson BL. The chemotherapy of rodent malarial. Studies on puronaridine and other manich base antimalarials. Ann Trop Med Parasitol. 1992;86:455–65.
CAS
PubMed
Google Scholar
Mengiste B, Makonnen E, Urga K. In vivo antimalarial activity of Dodonaea angustifolia seed extracts against Plasmodium berghei in mice model. MEJS. 2012;4:47–63.
Google Scholar
Raina N, Goyal AK, Pillai CR, Rath G. Development and characterization of artemether loaded solid lipid nanoparticles. IJPER. 2013;47(2):123–8.
Google Scholar
Burkersroda FV, Schedl L, Gopfericha A. Why degradable polymers undergo surface erosion or bulk erosion? Biomaterials. 2002;23:4221–31.
Article
Google Scholar
Deng M, Nair LS, Nukavarapu SP, Kumbar SG, Jiang T, Weikel AL, et al. Porous structures: in situ porous structures: a unique polymer erosion mechanism in biodegradable dipeptide-based polyphosphazene and polyester blends producing matrices for regenerative engineering. Adv Funct Mater. 2010;20:2743.
PubMed Central
PubMed
Article
Google Scholar
Lakshmi S, Katti DS, Laurencin CT. Biodegradable polyphosphazenes for drug delivery applications. Adv Drug Deliv Rev. 2003;55:467–82.
CAS
PubMed
Article
Google Scholar
Reddy RC, Vathsala PG, Keshamouni VG. Curcumin for malaria therapy. Biochem Biophys Res Commun. 2005;326:472–4.
CAS
PubMed
Article
Google Scholar
Matthew C, Amy C, Robyn TB. Inhibition of intestinal tumors by curcumin is associated with changes in the intestinal immune cell profile. J Surg Res. 2000;89:169–75.
Article
Google Scholar
Golenser J, Domb A, Teomim D. The treatment of animal models of malaria with iron chelators by the use of a novel polymeric device for slow drug release. J Pharmacol Exp Ther. 1997;281:1127–35.
CAS
PubMed
Google Scholar
Crommelin DJA, Eling WMC, Steerenberg PA. Liposome and immunoliposome for control release or site specific delivery of anti-parasitic drugs and cytostatics. J Control Release. 1991;161:47–154.
Google Scholar
Aditya NP, Chimote G, Gunalan K, Banerjee R, Patankar S, Madhusudhan B. Curcuminoids-loaded liposomes in combination with arteether protects against Plasmodium berghei infection in mice. Exp Parasitol. 2012;131:292–9. doi:10.1016/j.exppara.2012.04.010.
CAS
PubMed
Article
Google Scholar