Skip to main content
Log in

Exploring Advantages/Disadvantages and Improvements in Overcoming Gene Delivery Barriers of Amino Acid Modified Trimethylated Chitosan

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Present study aimed at exploring advantages/disadvantages of amino acid modified trimethylated chitosan in conquering multiple gene delivery obstacles and thus providing comprehensive understandings for improved transfection efficiency.

Methods

Arginine, cysteine, and histidine modified trimethyl chitosan were synthesized and employed to self-assemble with plasmid DNA (pDNA) to form nanocomplexes, namely TRNC, TCNC, and THNC, respectively. They were assessed by structural stability, cellular uptake, endosomal escape, release behavior, nuclear localization, and in vitro and in vivo transfection efficiencies. Besides, sodium tripolyphosphate (TPP) was added into TRNC to compromise certain disadvantageous attributes for pDNA delivery.

Results

Optimal endosomal escape ability failed to bring in satisfactory transfection efficiency of THNC due to drawbacks in structural stability, cellular uptake, pDNA liberation, and nuclear distribution. TCNC evoked the most potent gene expression owing to multiple advantages including sufficient stability, preferable uptake, efficient pDNA release, and high nucleic accumulation. Undesirable stability and insufficient pDNA release adversely affected TRNC-mediated gene transfer. However, incorporation of TPP could improve such disadvantages and consequently resulted in enhanced transfection efficiencies.

Conclusions

Coordination of multiple contributing effects to conquer all delivery obstacles was necessitated for improved transfection efficiency, which would provide insights into rational design of gene delivery vehicles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

ANOVA:

Analysis of variance

CLSM:

Confocal laser scanning microscopy

CTB:

Cholera toxin subunit B

DLS:

Dynamic light scattering

DMEM:

Dulbecco’s modified Eagle’s medium

EDC:

1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride

FBS:

Fetal bovine serum

FITC:

Fluorescein isothiocyanate

GSH:

Glutathione

NC:

Nanocomplexes

NHS:

N-hydroxysuccinimide

pDNA:

Plasmid DNA

SEM:

Scanning electron microscopy

TR:

TMC-Arginine

TRNC:

TR/pDNA nanocomplexes

TRNC2:

TR/TPP/pDNA nanocomplexes

TC:

TMC-Cysteine

TCNC:

TC/pDNA nanocomplexes

TH:

TMC-Histidine

THNC:

TH/pDNA nanocmplexes

TMC:

Trimethyl chitosan

TNC:

TMC/pDNA nanocomplexes

TPP:

Sodium tripolyphosphate

REFERENCES

  1. Pichon C, Billiet L, Midoux P. Chemical vectors for gene delivery: uptake and intracellular trafficking. Curr Opin Biotech. 2010;21(5):640–5.

    Article  CAS  PubMed  Google Scholar 

  2. Pack DW, Hoffman AS, Pun S, Stayton P. Design and development of polymers for gene delivery. Nat Rev Drug Discov. 2005;4(7):581–93.

    Article  CAS  PubMed  Google Scholar 

  3. Casettari L, Vllasaliu D, Lam J. Biomedical applications of amino acid-modified chitosans: a review. Biomaterials. 2012;33(30):7565–83.

    Article  CAS  PubMed  Google Scholar 

  4. Choi J, Nam K, Park J, Kim J, Lee J, Park J. Enhanced transfection efficiency of PAMAM dendrimer by surface modification with L-arginine. J Control Release. 2004;99(3):445–56.

    Article  CAS  PubMed  Google Scholar 

  5. Kim T, Baek J, Bai C, Park J. Arginine-conjugated polypropylenimine dendrimer as a non-toxic and efficient gene delivery carrier. Biomaterials. 2007;28(11):2061–7.

    Article  CAS  PubMed  Google Scholar 

  6. Kim T, Ou M, Lee M, Kim S. Arginine-grafted bioreducible poly (disulfide amine) for gene delivery systems. Biomaterials. 2009;30(4):658–64.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Morris VB, Sharma CP. Folate mediated in vitro targeting of depolymerised trimethylated chitosan having arginine functionality. J Colloid Interf Sci. 2010;348(2):360–8.

    Article  CAS  Google Scholar 

  8. Khalil K, Kogure K, Futaki S, Harashima H. Octaarginine-modified liposomes: enhanced cellular uptake and controlled intracellular trafficking. Int J Pharmaceut. 2008;354(1–2):39–48.

    Article  CAS  Google Scholar 

  9. Midoux P, Pichon C, Yaouanc J, Jaffres P. Chemical vectors for gene delivery: a current review on polymers, peptides and lipids containing histidine or imidazole as nucleic acids carriers. Brit J Pharmacol. 2009;157(2):166–78.

    Article  CAS  Google Scholar 

  10. Gu J, Wang X, Jiang X, Chen Y, Chen L, Fang X, et al. Self-assembled carboxymethyl poly (L-histidine) coated poly (β-amino ester)/DNA complexes for gene transfection. Biomaterials. 2012;33(2):644–58.

    Article  CAS  PubMed  Google Scholar 

  11. Benns J, Choi J, Mahato R, Park J, Kim S. pH-sensitive cationic polymer gene delivery vehicle: N-Ac-poly(L-histidine)-graft-poly(L-lysine) comb shaped polymer. Bioconjug Chem. 2000;11(5):637–45.

    Article  CAS  PubMed  Google Scholar 

  12. Schmitz T, Bravo-Osuna I, Vauthier C, Ponchel G, Bernkop-Schnurch A. Development and in vitro evaluation of a thiomer-based nanoparticulate gene delivery system. Biomaterials. 2007;28(3):524–31.

    Article  CAS  PubMed  Google Scholar 

  13. Lee D, Zhang W, Shirley S, Kong X, Hellermann G, Lockey R, et al. Thiolated chitosan/DNA nanocomplexes exhibit enhanced and sustained gene delivery. Pharm Res. 2007;24(1):157–67.

    Article  CAS  PubMed  Google Scholar 

  14. Peng Q, Zhong Z, Zhuo R. Disulfide cross-linked polyethylenimines (PEI) prepared via thiolation of low molecular weight PEI as highly efficient gene vectors. Bioconjug Chem. 2008;19(2):499–506.

    Article  CAS  PubMed  Google Scholar 

  15. Lo S, Wang S. An endosomolytic Tat peptide produced by incorporation of histidine and cysteine residues as a nonviral vector for DNA transfection. Biomaterials. 2008;29(15):2408–14.

    Article  CAS  PubMed  Google Scholar 

  16. Kean T, Roth S, Thanou M. Trimethylated chitosans as non-viral gene delivery vectors: cytotoxicity and transfection efficiency. J Control Release. 2005;103(3):643–53.

    Article  CAS  PubMed  Google Scholar 

  17. Zheng H, Tang C, Yin C. The effect of crosslinking agents on the transfection efficiency, cellular and intracellular processing of DNA/polymer nanocomplexes. Biomaterials. 2013;34(13):3479–88.

    Article  CAS  PubMed  Google Scholar 

  18. Zhao X, Yin L, Ding J, Tang C, Gu S, Yin C, et al. Thiolated trimethyl chitosan nanocomplexes as gene carriers with high in vitro and in vivo transfection efficiency. J Control Release. 2010;144(1):46–54.

    Article  CAS  PubMed  Google Scholar 

  19. Layek B, Singh J. Amino acid grafted chitosan for high performance gene delivery: comparison of amino acid hydrophobicity on vector and polyplex characteristics. Biomacromolecules. 2013;14(2):485–94.

    Article  CAS  PubMed  Google Scholar 

  20. Francis P, Barnett N, Foitzik R, Gange M, Lewis S. Chemiluminescence from the Sakaguchi reaction. Anal Biochem. 2004;329(2):340–1.

    Article  CAS  PubMed  Google Scholar 

  21. Han L, Tang C, Yin H. Effect of binding affinity for siRNA on the in vivo antitumor efficacy of polyplexes. Biomaterials. 2013;34(21):5317–27.

    Article  CAS  PubMed  Google Scholar 

  22. Sun S, Lin Y, Weng Y, Chen M. Efficiency improvements on ninhydrin method for amino acid quantification. J Food Compos Anal. 2006;19(2–3):112–7.

    Article  CAS  Google Scholar 

  23. Ter-Avetisyan G, Tuennemann G, Nowak D, Nitschke M, Herrmann A, Drab M, et al. Cell entry of arginine-rich peptides is independent of endocytosis. J Biol Chem. 2009;284(6):3370–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Ishii T, Okahata Y, Sato T. Facile preparation of a fluorescence-labeled plasmid. Chem Lett. 2000;4:386–7.

    Article  Google Scholar 

  25. Thanou M, Kotze A, Scharringhausen T, LueBen H, de Boer A, Verhoef J, et al. Effect of degree of quaternization of N-trimethyl chitosan chloride for enhanced transport of hydrophilic compounds across intestinal Caco-2 cell monolayers. J Control Release. 2000;64(1–3):15–25.

    Article  CAS  PubMed  Google Scholar 

  26. Ding J, He R, Zhou G, Tang C, Yin C. Multilayered mucoadhesive hydrogel films based on thiolated hyaluronic acid and polyvinylalcohol for insulin delivery. Acta Biomater. 2012;8(10):3643–51.

    Article  CAS  PubMed  Google Scholar 

  27. Azari F, Sandros M, Tabrizian M. Self-assembled multifunctional nanoplexes for gene inhibitory therapy. Nanomed-UK. 2011;6(4):669–80.

    Article  CAS  Google Scholar 

  28. Khalil IA, Kogure K, Akita H, Harashima H. Uptake pathways and subsequent intracellular trafficking in nonviral gene delivery. Pharmacol Rev. 2006;58(1):32–45.

    Article  CAS  PubMed  Google Scholar 

  29. He C, Yin L, Tang C, Yin C. Multifunctional polymeric nanoparticles for oral delivery of TNF-α siRNA to macrophages. Biomaterials. 2013;34(11):2843–54.

    Article  CAS  PubMed  Google Scholar 

  30. Yin L, Song Z, Kim K, Zheng N, Tang H, Lu H, et al. Reconfiguring the architectures of cationic helical polypeptides to control non-viral gene delivery. Biomaterials. 2013;34(9):2340–9.

    Article  CAS  PubMed  Google Scholar 

  31. Thomas J, Rekha M, Sharma C. Unraveling the intracellular efficacy of dextran-histidine polycation as an efficient nonviral gene delivery system. Mol Pharmaceut. 2012;9(1):121–34.

    Article  CAS  Google Scholar 

  32. Shigeta K, Kawakami S, Higuchi Y, Okuda T, Yagi H, Yamashita F, et al. Novel histidine-conjugated galactosylated cationic liposomes for efficient hepatocyte-selective gene transfer in human hepatoma HepG2 cells. J Control Release. 2007;118(2):262–70.

    Article  CAS  PubMed  Google Scholar 

  33. Hu Y, Haynes M, Wang Y, Liu F, Huang L. A highly efficient synthetic vector: nonhydrodynamic delivery of DNA to hepatocyte nuclei in vivo. ACS Nano. 2013;7(6):5376–84.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Chang K, Higuchi Y, Kawakami S, Yamashita F, Hashida M. Development of lysine-histidine dendron modified chitosan for improving transfection efficiency in HEK 293 cells. J Control Release. 2011;156(2):195–202.

    Article  CAS  PubMed  Google Scholar 

  35. Gabrielson N, Lu H, Yin L, Li D, Wang F, Cheng J. Reactive and bioactive cationic α-helical polypeptide template for nonviral gene delivery. Angew Chem Int Edit. 2012;51(5):1143–7.

    Article  CAS  Google Scholar 

  36. Gilleron J, Querbes W, Zeigerer A, Borodovsky A, Marscio G, Schubert U, et al. Image-based analysis of lipid nanoparticle-mediated siRNA delivery, intracellular trafficking and endosomal escape. Nat Biotechnol. 2013;31(7):638–49.

    Article  CAS  PubMed  Google Scholar 

  37. Bayer N, Schober D, Prchla E, Murphy R, Blaas D, Fuchs R. Effect of bafilomycin A1 and nocodazole on endocytic transport in HeLa cells: implications for viral uncoating and infection. J Virol. 1998;72(12):9645–55.

    PubMed Central  CAS  PubMed  Google Scholar 

  38. Grigsby CL, Leong KW. Balancing protection and release of DNA: tools to address a bottleneck of non-viral gene delivery. J R Soc Interface. 2010;7(1):S67–82.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Chang J, Xu X, Li H, Jian Y, Wang G, He B, et al. Components simulation of viral envelope via amino acid modified chitosans for efficient nucleic acid delivery: in vitro and in vivo study [J]. Adv Funct Mater. 2013;23(21):2691–9.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

The authors would like to thank for the financial support from the National Natural Science Foundation of China (No. 81172995 and No. 81273460).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cui Tang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 656 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, H., Tang, C. & Yin, C. Exploring Advantages/Disadvantages and Improvements in Overcoming Gene Delivery Barriers of Amino Acid Modified Trimethylated Chitosan. Pharm Res 32, 2038–2050 (2015). https://doi.org/10.1007/s11095-014-1597-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-014-1597-7

KEY WORDS

Navigation