Skip to main content

Advertisement

Log in

Physiology-Based Pharmacokinetics of Caspofungin for Adults and Paediatrics

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Caspofungin (CAS) is an antifungal agent for intravenous application in adults and children. Our aim was the development and validation of a physiology-based pharmacokinetic (PBPK) model in order to predict the pharmacokinetics in different patient populations, particularly in paediatrics.

Methods

A PBPK model for adults was built and validated with raw data of the two clinical trials CASLAMB and CASMTD. Afterwards, the model was scaled for paediatric patients under the consideration of known biochemical differences between adults and paediatrics.

Results

The simulated results of the PBPK model were in good agreement with the observed values of the CASLAMB and CASMTD trial. Patients of the CASLAMB trial received CAS in combination with cyclosporine A (CsA), which leads to an increased AUC0–24h of CAS hypothetically due to an inhibition of the hepatic transport protein OATP1B1 by CsA. However, there was no difference in the transport rate of OATP1B1 between CASLAMB and CASMTD patients in the PBPK model, suggesting that CsA might not influence OATP1B1. Furthermore, the model was able to sufficiently predict the pharmacokinetics of paediatric patients compared to published data.

Conclusion

The final PBPK model of CAS without individualized parameter is able to predict the pharmacokinetics in different patient populations correctly. Thus, the model provides a basis for investigators to choose doses and sampling times for special populations such as infants and small children.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AUC:

Area under the curve

CAS:

Caspofungin

CI:

Confidence interval

CLH :

Hepatic clearance

CLint :

Hepatic intrinsic clearance

fu:

Fraction unbound

GEOM:

Geometric mean

GOF:

Goodness of fit

HTK:

Haematocrit

i.v.:

Intravenous

Krbc, u :

Partition coefficient of the unbound fraction into the red blood cells

LAMB:

Liposomal Amphotericin B

OATP:

Organic anion transporting polypeptide

PBPK:

Physiology based pharmacokinetic

PE:

Prediction error

POP-PK:

Population pharmacokinetic

QH :

Hepatic blood flow

References

  1. Maertens J, Raad I, Petrikkos G, Boogaerts M, Selleslag D, Petersen FB, et al. Efficacy and safety of caspofungin for treatment of invasive aspergillosis in patients refractory to or intolerant of conventional antifungal therapy. Clin Infect Dis. 2004;39(11):1563–71.

    Article  CAS  PubMed  Google Scholar 

  2. Mora-Duarte J, Betts R, Rotstein C, Colombo AL, Thompson-Moya L, Smietana J, et al. Comparison of caspofungin and amphotericin B for invasive candidiasis. N Engl J Med. 2002;347(25):2020–9.

    Article  CAS  PubMed  Google Scholar 

  3. Villanueva A, Arathoon EG, Gotuzzo E, Berman RS, DiNubile MJ, Sable CA. A randomized double-blind study of caspofungin versus amphotericin for the treatment of candidal esophagitis. Clin Infect Dis. 2001;33(9):1529–35.

    Article  CAS  PubMed  Google Scholar 

  4. Villanueva A, Gotuzzo E, Arathoon EG, Noriega LM, Kartsonis NA, Lupinacci RJ, et al. A randomized double-blind study of caspofungin versus fluconazole for the treatment of esophageal candidiasis. Am J Med. 2002;113(4):294–9.

    Article  CAS  PubMed  Google Scholar 

  5. Arathoon EG, Gotuzzo E, Noriega LM, Berman RS, DiNubile MJ, Sable CA. Randomized, double-blind, multicenter study of caspofungin versus amphotericin B for treatment of oropharyngeal and esophageal candidiases. Antimicrob Agents Chemother. 2002;46(2):451–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Sable C, Nguyen B, Chodakewitz J, DiNubile M. Safety and tolerability of caspofungin acetate in the treatment of fungal infections. Transpl Infect Dis. 2002;4(1):25–30.

    Article  CAS  PubMed  Google Scholar 

  7. Sawistowska-Schroeder ET, Kerridge D, Perry H. Echinocandin inhibition of 1, 3-β-D-glucan synthase from Candida albicans. FEBS Lett. 1984;173(1):134–8.

    Article  CAS  Google Scholar 

  8. Shematek EM, Braatz JA, Cabib E. Biosynthesis of the yeast cell wall. I. Preparation and properties of beta-(1 leads to 3) glucan synthetase. J Biol Chem. 1980;255(3):888–94.

    CAS  PubMed  Google Scholar 

  9. Kurtz M, Heath I, Marrinan J, Dreikorn S, Onishi J, Douglas C. Morphological effects of lipopeptides against Aspergillus fumigatus correlate with activities against (1, 3)-beta-D-glucan synthase. Antimicrob Agents Chemother. 1994;38(7):1480–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. MSD. Package insert of Caspofungin. 2011.

  11. Walsh TJ, Adamson PC, Seibel NL, Flynn PM, Neely MN, Schwartz C, et al. Pharmacokinetics, safety, and tolerability of caspofungin in children and adolescents. Antimicrob Agents Chemother. 2005;49(11):4536–45.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Hajdu R, Thompson R, Sundelof JG, Pelak BA, Bouffard FA, Dropinski JF, et al. Preliminary animal pharmacokinetics of the parenteral antifungal agent MK-0991 (L-743,872). Antimicrob Agents Chemother. 1997;41(11):2339–44.

    PubMed Central  CAS  PubMed  Google Scholar 

  13. Stone JA, Xu X, Winchell GA, Deutsch PJ, Pearson PG, Migoya EM, et al. Disposition of caspofungin: role of distribution in determining pharmacokinetics in plasma. Antimicrob Agents Chemother. 2004;48(3):815–23.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Stone EA, Fung HB, Kirschenbaum HL. Caspofungin: an echinocandin antifungal agent. Clin Ther. 2002;24(3):351–77.

    Article  CAS  PubMed  Google Scholar 

  15. Migoya EM, Mistry GC, Stone JA, Comisar W, Sun P, Norcross A, et al. Safety and pharmacokinetics of higher doses of caspofungin in healthy adult participants. J Clin Pharmacol. 2011;51(2):202–11.

    Article  CAS  PubMed  Google Scholar 

  16. Sandhu P, Lee W, Xu X, Leake BF, Yamazaki M, Stone JA, et al. Hepatic uptake of the novel antifungal agent caspofungin. Drug Metab Dispos. 2005;33(5):676–82.

    Article  CAS  PubMed  Google Scholar 

  17. Balani SK, Xu X, Arison BH, Silva MV, Gries A, DeLuna FA, et al. Metabolites of caspofungin acetate, a potent antifungal agent, in human plasma and urine. Drug Metab Dispos. 2000;28(11):1274–8.

    CAS  PubMed  Google Scholar 

  18. Stone JA, Holland SD, Wickersham PJ, Sterrett A, Schwartz M, Bonfiglio C, et al. Single- and multiple-dose pharmacokinetics of caspofungin in healthy men. Antimicrob Agents Chemother. 2002;46(3):739–45.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Wuerthwein G, Cornely OA, Trame MN, Vehreschild JJ, Vehreschild MJ, Farowski F, et al. Population pharmacokinetics of escalating doses of caspofungin in a phase II study of patients with invasive aspergillosis. Antimicrob Agents Chemother. 2013;57(4):1664–71.

    Article  CAS  Google Scholar 

  20. Ullmann AJ. Review of the safety, tolerability, and drug interactions of the new antifungal agents caspofungin and voriconazole. Curr Med Res Opin. 2003;19(4):263–71.

    Article  CAS  PubMed  Google Scholar 

  21. Schmitt W, Willmann S. Physiology-based pharmacokinetic modeling: ready to be used. Drug Discov Today : Technol. 2004;1(4):449–56.

    Article  CAS  Google Scholar 

  22. Khalil F, Laer S. Physiologically based pharmacokinetic modeling: methodology, applications, and limitations with a focus on its role in pediatric drug development. J Biomed Biotechnol. 2011;2011:1–13.

    Article  Google Scholar 

  23. Edginton AN, Theil F-P, Schmitt W, Willmann S. Whole body physiologically-based pharmacokinetic models: their use in clinical drug development. Expert Opin Drug Metab Toxicol. 2008;4(9):1143–52.

    Article  CAS  PubMed  Google Scholar 

  24. Espie P, Tytgat D, Sargentini-Maier ML, Poggesi I, Watelet JB. Physiologically based pharmacokinetics (PBPK). Drug Metab Rev. 2009;41(3):391–407.

    Article  CAS  PubMed  Google Scholar 

  25. von Kleist M, Huisinga W. Physiologically based pharmacokinetic modelling: a sub-compartmentalized model of tissue distribution. J Pharmacokinet Pharmacodyn. 2007;34(6):789–806.

    Article  Google Scholar 

  26. Jones HM, Parrott N, Jorga K, Lavé T. A novel strategy for physiologically based predictions of human pharmacokinetics. Clin Pharmacokinet. 2006;45(5):511–42.

    Article  CAS  PubMed  Google Scholar 

  27. Edginton AN, Schmitt W, Voith B, Willmann S. A mechanistic approach for the scaling of clearance in children. Clin Pharmacokinet. 2006;45(7):683–704.

    Article  CAS  PubMed  Google Scholar 

  28. Groll AH, Silling G, Young C, Schwerdtfeger R, Ostermann H, Heinz WJ, et al. Randomized comparison of safety and pharmacokinetics of caspofungin, liposomal amphotericin B, and the combination of both in allogeneic hematopoietic stem cell recipients. Antimicrob Agents Chemother. 2010;54(10):4143–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Cornely OA, Vehreschild JJ, Vehreschild MJ, Wuerthwein G, Arenz D, Schwartz S, et al. Phase II dose escalation study of caspofungin for invasive aspergillosis. Antimicrob Agents Chemother. 2011;55(12):5798–803.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. MSD. http://www.cancias.de. 07.09.2013.

  31. Nishimura M, Naito S. Tissue-specific mRNA expression profiles of human ATP-binding cassette and solute carrier transporter superfamilies. Drug Metab Pharmacokinet. 2005;20(6):452–77.

    Article  CAS  PubMed  Google Scholar 

  32. Morrissey K, Wen C, Johns S, Zhang L, Huang S, Giacomini K. The UCSF-FDA TransPortal: a public drug transporter database. Clin Pharmacol Ther. 2012;92(5):545–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Nakanishi T, Tamai I. Genetic polymorphisms of OATP transporters and their impact on intestinal absorption and hepatic disposition of drugs. Drug Metab Pharmacokinet. 2012;27(1):106–21.

    Article  CAS  PubMed  Google Scholar 

  34. Niemi M, Pasanen MK, Neuvonen PJ. Organic anion transporting polypeptide 1B1: a genetically polymorphic transporter of major importance for hepatic drug uptake. Pharmacol Rev. 2011;63(1):157–81.

    Article  CAS  PubMed  Google Scholar 

  35. Krauss M, Burghaus R, Lippert J, Niemi M, Neuvonen P, Schuppert A, et al. Using bayesian-PBPK modeling for assessment of inter-individual variability and subgroup stratification. In Silico Pharmacol. 2013;1(1):1–11.

    Article  Google Scholar 

  36. Rodgers T, Leahy D, Rowland M. Physiologically based pharmacokinetic modeling 1: predicting the tissue distribution of moderate‐to‐strong bases. J Pharm Sci. 2005;94(6):1259–76.

    Article  CAS  PubMed  Google Scholar 

  37. Rodgers T, Rowland M. Physiologically based pharmacokinetic modelling 2: predicting the tissue distribution of acids, very weak bases, neutrals and zwitterions. J Pharm Sci. 2006;95(6):1238–57.

    Article  CAS  PubMed  Google Scholar 

  38. Valentin J. Basic anatomical and physiological data for use in radiological protection: reference values: ICRP Publication 89. Ann ICRP. 2002;32(3):1–277.

    Article  Google Scholar 

  39. McNamara PJ, Alcorn J. Protein binding predictions in infants. AAPS Pharm Sci. 2002;4(1):19–26.

    Article  Google Scholar 

  40. Rubin MI, Bruck E, Rapoport M, Snively M, McKay H, Baumler A. Maturation of renal function in childhood: clearance studies. J Clin Investig. 1949;28(5):1144–62.

    Article  PubMed Central  CAS  Google Scholar 

  41. Gertz M, Cartwright CM, Hobbs MJ, Kenworthy KE, Rowland M, Houston JB, et al. Cyclosporine inhibition of hepatic and intestinal CYP3A4, uptake and efflux transporters: application of PBPK modeling in the assessment of drug-drug interaction potential. Pharm Res. 2013;30(3):761–80.

    Article  CAS  PubMed  Google Scholar 

  42. Amundsen R, Christensen H, Zabihyan B, Asberg A. Cyclosporine A, but not tacrolimus, shows relevant inhibition of organic anion-transporting protein 1B1-mediated transport of atorvastatin. Drug Metab Dispos. 2010;38(9):1499–504.

    Article  CAS  PubMed  Google Scholar 

  43. Hornik K. The R, project. 2014.

    Google Scholar 

  44. Saez-Llorens X, Macias M, Maiya P, Pineros J, Jafri HS, Chatterjee A, et al. Pharmacokinetics and safety of caspofungin in neonates and infants less than 3 months of age. Antimicrob Agents Chemother. 2009;53(3):869–75.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Neely M, Jafri HS, Seibel N, Knapp K, Adamson PC, Bradshaw SK, et al. Pharmacokinetics and safety of caspofungin in older infants and toddlers. Antimicrob Agents Chemother. 2009;53(4):1450–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Wuerthwein G, Young C, Lanvers-Kaminsky C, Hempel G, Trame MN, Schwerdtfeger R, et al. Population pharmacokinetics of liposomal amphotericin B and caspofungin in allogeneic hematopoietic stem cell recipients. Antimicrob Agents Chemother. 2012;56(1):536–43.

    Article  CAS  Google Scholar 

  47. Nguyen TH, Hoppe-Tichy T, Geiss HK, Rastall AC, Swoboda S, Schmidt J, et al. Factors influencing caspofungin plasma concentrations in patients of a surgical intensive care unit. J Antimicrob Chemother. 2007;60(1):100–6.

    Article  CAS  PubMed  Google Scholar 

  48. Li CC, Sun P, Dong Y, Bi S, Desai R, Dockendorf MF, et al. Population pharmacokinetics and pharmacodynamics of caspofungin in pediatric patients. Antimicrob Agents Chemother. 2011;55(5):2098–105.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

This work was supported by a free software licence of PK-Sim® provided by Bayer Technology Services GmbH, Leverkusen, Germany. AHG has received grants from Gilead and Merck, Sharp & Dohme, is a consultant to Astellas, Gilead, Merck, Sharp & Dohme and Schering-Plough and has served on the speakers’ bureaus of Astellas, Gliead, Merck, Sharpe & Dohme, Pfizer, Schering-Plough and Zeneus/Cephalon. JJV is supported by the German Federal Ministry of Research and Education (BMBF grant 01KI0771) and the German Centre for Infection Research. JJV has received research grants from Astellas, Gilead Sciences, Infectopharm, Merck, Pfizer, and Essex/Schering-Plough; and served on the speakers’ bureau of Astellas, Merck Sharp Dohme/Merck, Gilead Sciences, Pfizer, and Essex/Schering-Plough. OAC is supported by the German Federal Ministry of Research and Education (BMBF grant 01KN1106), has received research grants from 3 M, Actelion, Astellas, Basilea, Bayer, Celgene, Cubist, Genzyme, Gilead, GSK, Merck/MSD, Miltenyi, Optimer, Pfizer, Quintiles, and Viropharma, is a consultant to 3 M, Astellas, Basilea, Cubist, Da Volterra, Daiichi Sankyo, F2G, Gilead, GSK, Merck/MSD, Optimer, Pfizer, Sanofi Pasteur and Summit/Vifor, and received lecture honoraria from Astellas, Gilead, Merck/MSD, and Pfizer. GH receives research grants from Bayer Technology Services GmbH, Leverkusen, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georg Hempel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stader, F., Wuerthwein, G., Groll, A.H. et al. Physiology-Based Pharmacokinetics of Caspofungin for Adults and Paediatrics. Pharm Res 32, 2029–2037 (2015). https://doi.org/10.1007/s11095-014-1595-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-014-1595-9

KEY WORDS

Navigation