Skip to main content
Log in

A Novel Monocarboxylate Transporter Inhibitor as a Potential Treatment Strategy for γ-Hydroxybutyric Acid Overdose

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Monocarboxylate transporter (MCT) inhibition represents a potential treatment strategy for γ-hydroxybutyric acid (GHB) overdose by blocking its renal reabsorption in the kidney. This study further evaluated the effects of a novel, highly potent MCT inhibitor, AR-C155858, on GHB toxicokinetics/toxicodynamics (TK/TD).

Methods

Rats were administered GHB (200, 600 or 1500 mg/kg i.v. or 1500 mg/kg po) with and without AR-C155858. Breathing frequency was continuously monitored using whole-body plethysmography. Plasma and urine samples were collected up to 8 h. The effect of AR-C155858 on GHB brain/plasma partitioning was also assessed.

Results

AR-C155858 treatment significantly increased GHB renal and total clearance after intravenous GHB administration at all the GHB doses used in this study. GHB-induced respiratory depression was significantly improved by AR-C155858 as demonstrated by an improvement in the respiratory rate. AR-C155858 treatment also resulted in a significant reduction in brain/plasma partitioning of GHB (0.1 ± 0.03) when compared to GHB alone (0.25 ± 0.02). GHB CLR and CLoral (CL/F) following oral administration were also significantly increased following AR-C155858 treatment (from 1.82 ± 0.63 to 5.74 ± 0.86 and 6.52 ± 0.88 to 10.2 ± 0.75 ml/min/kg, respectively).

Conclusion

The novel and highly potent MCT inhibitor represents a potential treatment option for GHB overdose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AUEC:

Area under the effect curve

AUC:

Area under the plasma concentration-time curve

Cl:

Clearance

ClM :

Metabolic clearance

ClR :

Renal clearance

Emax :

Maximum pharmacodynamic effect

GABA:

γ-aminobutyric acid

GHB:

γ-hydroxybutyrate

MCT:

Monocarboxylate transporter

Td :

Duration of effect

TK/TD:

Toxicokinetics/toxicodynamics

References

  1. Maitre M. The gamma-hydroxybutyrate signalling system in brain: organization and functional implications. Prog Neurobiol. 1997;51(3):337–61.

    Article  CAS  PubMed  Google Scholar 

  2. Wong CG, Chan KF, Gibson KM, Snead OC. Gamma-hydroxybutyric acid: neurobiology and toxicology of a recreational drug. Toxicol Rev. 2004;23(1):3–20.

    Article  CAS  PubMed  Google Scholar 

  3. Li J, Stokes SA, Woeckener A. A tale of novel intoxication: a review of the effects of gamma-hydroxybutyric acid with recommendations for management. Ann Emerg Med. 1998;31(6):729–36.

    Article  CAS  PubMed  Google Scholar 

  4. Mason PE, Kerns 2nd WP. Gamma hydroxybutyric acid (GHB) intoxication. Acad Emerg Med. 2002;9(7):730–9.

    Article  PubMed  Google Scholar 

  5. Zvosec DL, Smith SW, Porrata T, Strobl AQ, Dyer JE. Case series of 226 gamma-hydroxybutyrate-associated deaths: lethal toxicity and trauma. Am J Emerg Med. 2011;29(3):319–32.

    Article  PubMed  Google Scholar 

  6. Palatini P, Tedeschi L, Frison G, Padrini R, Zordan R, Orlando R, et al. Dose-dependent absorption and elimination of gamma-hydroxybutyric acid in healthy volunteers. Eur J Clin Pharmacol. 1993;45(4):353–6.

    Article  CAS  PubMed  Google Scholar 

  7. Lettieri JT, Fung HL. Dose-dependent pharmacokinetics and hypnotic effects of sodium gamma-hydroxybutyrate in the rat. J Pharmacol Exp Ther. 1979;208(1):7–11.

    CAS  PubMed  Google Scholar 

  8. Arena C, Fung HL. Absorption of sodium gamma-hydroxybutyrate and its prodrug gamma-butyrolactone: relationship between in vitro transport and in vivo absorption. J Pharm Sci. 1980;69(3):356–8.

    Article  CAS  PubMed  Google Scholar 

  9. Morris ME, Hu K, Wang Q. Renal clearance of gamma-hydroxybutyric acid in rats: increasing renal elimination as a detoxification strategy. J Pharmacol Exp Ther. 2005;313(3):1194–202.

    Article  CAS  PubMed  Google Scholar 

  10. Lettieri J, Fung HL. Absorption and first-pass metabolism of 14C-gamma-hydroxybutyric acid. Res Commun Chem Pathol Pharmacol. 1976;13(3):425–37.

    CAS  PubMed  Google Scholar 

  11. Wang Q, Darling IM, Morris ME. Transport of gamma-hydroxybutyrate in rat kidney membrane vesicles: role of monocarboxylate transporters. J Pharmacol Exp Ther. 2006;318(2):751–61.

    Article  CAS  PubMed  Google Scholar 

  12. Halestrap AP, Price NT. The proton-linked monocarboxylate transporter (MCT) family: structure, function and regulation. Biochem J. 1999;343(Pt 2):281–99.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Ganapathy V, Thangaraju M, Gopal E, Martin PM, Itagaki S, Miyauchi S, et al. Sodium-coupled monocarboxylate transporters in normal tissues and in cancer. AAPS J. 2008;10(1):193–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Gopal E, Fei YJ, Sugawara M, Miyauchi S, Zhuang L, Martin P, et al. Expression of slc5a8 in kidney and its role in Na(+)-coupled transport of lactate. J Biol Chem. 2004;279(43):44522–32.

    Article  CAS  PubMed  Google Scholar 

  15. Wang Q, Lu Y, Morris ME. Monocarboxylate transporter (MCT) mediates the transport of gamma-hydroxybutyrate in human kidney HK-2 cells. Pharm Res. 2007;24(6):1067–78.

    Article  CAS  PubMed  Google Scholar 

  16. Cui D, Morris ME. The drug of abuse gamma-hydroxybutyrate is a substrate for sodium-coupled monocarboxylate transporter (SMCT) 1 (SLC5A8): characterization of SMCT-mediated uptake and inhibition. Drug Metab Dispos. 2009;37(7):1404–10.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Wang Q, Morris ME. Flavonoids modulate monocarboxylate transporter-1-mediated transport of gamma-hydroxybutyrate in vitro and in vivo. Drug Metab Dispos. 2007;35(2):201–8.

    Article  CAS  PubMed  Google Scholar 

  18. Wang Q, Wang X, Morris ME. Effects of L-lactate and D-mannitol on gamma-hydroxybutyrate toxicokinetics and toxicodynamics in rats. Drug Metab Dispos. 2008;36(11):2244–51.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Morris ME, Morse BL, Baciewicz GJ, Tessena MM, Acquisto NM, Hutchinson DJ, DiCenzo R. Monocarboxylate transporter inhibition with osmotic diuresis increases γ-hydroxybutyrate renal elimination in humans: a proof-of-concept study. J Clinic Toxicol. 2011;1(2):1000105.

  20. Carai MA, Colombo G, Brunetti G, Melis S, Serra S, Vacca G, et al. Role of GABA(B) receptors in the sedative/hypnotic effect of gamma-hydroxybutyric acid. Eur J Pharmacol. 2001;428(3):315–21.

    Article  CAS  PubMed  Google Scholar 

  21. Kaupmann K, Cryan JF, Wellendorph P, Mombereau C, Sansig G, Klebs K, et al. Specific gamma-hydroxybutyrate-binding sites but loss of pharmacological effects of gamma-hydroxybutyrate in GABA(B)(1)-deficient mice. Eur J Neurosci. 2003;18(10):2722–30.

    Article  PubMed  Google Scholar 

  22. Morse BL, Vijay N, Morris ME. gamma-Hydroxybutyrate (GHB)-induced respiratory depression: combined receptor-transporter inhibition therapy for treatment in GHB overdose. Mol Pharmacol. 2012;82(2):226–35.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Bhattacharya I, Boje KM. GHB (gamma-hydroxybutyrate) carrier-mediated transport across the blood–brain barrier. J Pharmacol Exp Ther. 2004;311(1):92–8.

    Article  CAS  PubMed  Google Scholar 

  24. Roiko SA, Felmlee MA, Morris ME. Brain uptake of the drug of abuse gamma-hydroxybutyric acid in rats. Drug Metab Dispos. 2012;40(1):212–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Vijay N, Morris ME. Role of monocarboxylate transporters in drug delivery to the brain. Curr Pharm Des. 2014;20(10):1487–98.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Roiko SA, Vijay N, Felmlee MA, Morris ME. Brain extracellular gamma-hydroxybutyrate concentrations are decreased by L-lactate in rats: role in the treatment of overdoses. Pharm Res. 2013;30(5):1338–48.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Pahlman C, Qi Z, Murray CM, Ferguson D, Bundick RV, Donald DK, et al. Immunosuppressive properties of a series of novel inhibitors of the monocarboxylate transporter MCT-1. Transpl Int. 2013;26(1):22–9.

    Article  PubMed  Google Scholar 

  28. Ekberg H, Qi Z, Pahlman C, Veress B, Bundick RV, Craggs RI, et al. The specific monocarboxylate transporter-1 (MCT-1) inhibitor, AR-C117977, induces donor-specific suppression, reducing acute and chronic allograft rejection in the rat. Transplantation. 2007;84(9):1191–9.

    Article  CAS  PubMed  Google Scholar 

  29. Ovens MJ, Davies AJ, Wilson MC, Murray CM, Halestrap AP. AR-C155858 is a potent inhibitor of monocarboxylate transporters MCT1 and MCT2 that binds to an intracellular site involving transmembrane helices 7–10. Biochem J. 2010;425(3):523–30.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Felmlee MA, Roiko SA, Morse BL, Morris ME. Concentration-effect relationships for the drug of abuse gamma-hydroxybutyric acid. J Pharmacol Exp Ther. 2010;333(3):764–71.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Drasbek KR, Christensen J, Jensen K. Gamma-hydroxybutyrate–a drug of abuse. Acta Neurol Scand. 2006;114(3):145–56.

    Article  CAS  PubMed  Google Scholar 

  32. Shitara Y, Nagamatsu Y, Wada S, Sugiyama Y, Horie T. Long-lasting inhibition of the transporter-mediated hepatic uptake of sulfobromophthalein by cyclosporin a in rats. Drug Metab Dispos. 2009;37(6):1172–8.

    Article  CAS  PubMed  Google Scholar 

  33. Morse BL, Morris ME. Effects of monocarboxylate transporter inhibition on the oral toxicokinetics/toxicodynamics of gamma-hydroxybutyrate and gamma-butyrolactone. J Pharmacol Exp Ther. 2013;345(1):102–10.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Kaufman EE, Nelson T. An overview of gamma-hydroxybutyrate catabolism: the role of the cytosolic NADP(+)-dependent oxidoreductase EC 1.1.1.19 and of a mitochondrial hydroxyacid-oxoacid transhydrogenase in the initial, rate-limiting step in this pathway. Neurochem Res. 1991;16(9):965–74.

    Article  CAS  PubMed  Google Scholar 

  35. Gerhart DZ, Enerson BE, Zhdankina OY, Leino RL, Drewes LR. Expression of monocarboxylate transporter MCT1 by brain endothelium and glia in adult and suckling rats. Am J Physiol. 1997;273(1 Pt 1):E207–13.

    CAS  PubMed  Google Scholar 

  36. Morse BL, Felmlee MA, Morris ME. gamma-Hydroxybutyrate blood/plasma partitioning: effect of physiologic pH on transport by monocarboxylate transporters. Drug Metab Dispos. 2012;40(1):64–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Galicia M, Nogue S, Miro O. Liquid ecstasy intoxication: clinical features of 505 consecutive emergency department patients. Emerg Med J. 2011;28(6):462–6.

    Article  PubMed  Google Scholar 

  38. Morse BL, Morris ME. Toxicokinetics/toxicodynamics of gamma-hydroxybutyrate-ethanol intoxication: evaluation of potential treatment strategies. J Pharmacol Exp Ther. 2013;346(3):504–13.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Lam WK, Felmlee MA, Morris ME. Monocarboxylate transporter-mediated transport of gamma-hydroxybutyric acid in human intestinal Caco-2 cells. Drug Metab Dispos. 2010;38(3):441–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Morse BA, Vijay N, Morris ME. Mechanistic modeling of Monocarboxylate transporter-mediated toxicokinetic/toxicodynamic interactions between γ-hydroxybutyrate and L-lactate. AAPS J. 2014;16(4):756–70.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

The authors thank Donna Ruszaj for her assistance in developing the current LC-MS/MS method. This work was supported by the National Institutes of Health National Institute on Drug Abuse [grant DA023223]. NV was funded in part by a fellowship from Pfizer Global Inc.

Authorship Contributions

Participated in research design: Morris, Vijay and Morse

Conducted experiments: Vijay and Morse

Contributed new reagents or analytic tools: Morris and Vijay

Performed data analysis: Vijay, Morris

Wrote or contributed to the writing of the manuscript: Morris and Vijay

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marilyn E. Morris.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vijay, N., Morse, B.L. & Morris, M.E. A Novel Monocarboxylate Transporter Inhibitor as a Potential Treatment Strategy for γ-Hydroxybutyric Acid Overdose. Pharm Res 32, 1894–1906 (2015). https://doi.org/10.1007/s11095-014-1583-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-014-1583-0

KEY WORDS

Navigation