Advertisement

Pharmaceutical Research

, Volume 32, Issue 4, pp 1383–1394 | Cite as

Small Amounts of Sub-Visible Aggregates Enhance the Immunogenic Potential of Monoclonal Antibody Therapeutics

  • Maryam Ahmadi
  • Christine J. Bryson
  • Edward A. Cloake
  • Katie Welch
  • Vasco Filipe
  • Stefan Romeijn
  • Andrea Hawe
  • Wim Jiskoot
  • Matthew P. Baker
  • Mark H. FoggEmail author
Research Paper

Abstract

Purpose

Determine the effect of minute quantities of sub-visible aggregates on the in vitro immunogenicity of clinically relevant protein therapeutics.

Methods

Monoclonal chimeric (rituximab) and humanized (trastuzumab) antibodies were subjected to fine-tuned stress conditions to achieve low levels (<3% of total protein) of sub-visible aggregates. The effect of stimulating human dendritic cells (DC) and CD4+ T cells with the aggregates was measured in vitro using cytokine secretion, proliferation and confocal microscopy.

Results

Due to its intrinsic high clinical immunogenicity, aggregation of rituximab had minimal effects on DC activation and T cell responses compared to monomeric rituximab. However, in the case of trastuzumab (low clinical immunogenicity) small quantities of aggregates led to potent CD4+ T cell proliferation as a result of strong cytokine and co-stimulatory signals derived from DC. Consistent with this, confocal studies showed that stir-stressed rituximab was rapidly internalised and associated with late endosomes of DC.

Conclusions

These data link minute amounts of aggregates with activation of the innate immune response, involving DC, resulting in T cell activation. Thus, when protein therapeutics with little or no clinical immunogenicity, such as trastuzumab, contain minute amounts of sub-visible aggregates, they are associated with significantly increased potential risk of clinical immunogenicity.

KEY WORDS

anti-drug antibodies biotherapeutics CD4+ T cell responses humanized antibodies immunogenicity 

ABBREVIATIONS

ADA

Anti-drug antibody

BCR

B cell receptor

CBA

Cytometric bead array

DC

Dendritic cell

DLS

Dynamic light scattering

mAbs

Monocolonal antibodies

MHC

Major histocompatibility complex

MoDC

Monocyte derived dendritic cell

Tfh

Follicular helper T cell

Notes

Conflict of interest

The authors declare no conflicts of interest.

Supplementary material

11095_2014_1541_Fig4_ESM.gif (36 kb)
Supplementary Fig. 1

(GIF 36 kb)

11095_2014_1541_MOESM1_ESM.tif (43 kb)
High Resolution Image (TIFF 42 kb)
11095_2014_1541_MOESM2_ESM.pptx (117 kb)
Supplementary Fig. 2 (PPTX 117 kb)
11095_2014_1541_MOESM3_ESM.docx (14 kb)
Supplementary Table 1 (DOCX 14 kb)
11095_2014_1541_MOESM4_ESM.docx (14 kb)
Supplementary Table 2 (DOCX 13 kb)

References

  1. 1.
    Fehr T, Bachmann MF, Bucher E, Kalinke U, Di Padova FE, Lang AB, et al. Role of repetitive antigen patterns for induction of antibodies against antibodies. J Exp Med. 1997;185(10):1785–92.CrossRefPubMedCentralPubMedGoogle Scholar
  2. 2.
    Bachmann MF, Rohrer UH, Kündig TM, Burki K, Hengartner H, Zinkernagel RM. The influence of antigen organization on B cell responsiveness. Science. 1993;262(5138):1448–51.CrossRefPubMedGoogle Scholar
  3. 3.
    Joubert MK, Hokom M, Eakin C, Zhou L, Deshpande M, Baker MP, et al. Highly aggregated antibody therapeutics can enhance the in vitro innate and late-stage T-cell immune responses. J Biol Chem. 2012;287(30):25266–79.CrossRefPubMedCentralPubMedGoogle Scholar
  4. 4.
    Fehr T, Naim HY, Bachmann MF, Ochsenbein AF, Spielhofer P, Bucher E, et al. T-cell independent IgM and enduring protective IgG antibodies induced by chimeric measles viruses. Nat Med. 1998;4(8):945–8.CrossRefPubMedGoogle Scholar
  5. 5.
    Kreuz W, Ettingshausen CE, Zyschka A, Oldenburg J, Saguer IM, Ehrenforth S, et al. Inhibitor development in previously untreated patients with hemophilia A: a prospective long-term follow-up comparing plasma-derived and recombinant products. Semin Thromb Hemost. 2002;28(3):285–90.CrossRefPubMedGoogle Scholar
  6. 6.
    Mahler H-C, Friess W, Grauschopf U, Kiese S. Protein aggregation: pathways, induction factors and analysis. J Pharm Sci. 2009;98(9):2909–34.CrossRefPubMedGoogle Scholar
  7. 7.
    Singh SK, Afonina N, Awwad M, Bechtold-Peters K, Blue JT, Chou D, et al. An industry perspective on the monitoring of subvisible particles as a quality attribute for protein therapeutics. J Pharm Sci. 2010;99(8):3302–21.CrossRefPubMedGoogle Scholar
  8. 8.
    Brange J, Langkjaer L, Havelund S, Vølund A. Chemical stability of insulin. 1. hydrolytic degradation during storage of pharmaceutical preparations. Pharm Res. 1992;9(6):715–26.CrossRefPubMedGoogle Scholar
  9. 9.
    Manning MC, Chou DK, Murphy BM, Payne RW, Katayama DS. Stability of protein pharmaceuticals: an update. Pharm Res. 2010;27:544–75.CrossRefPubMedGoogle Scholar
  10. 10.
    Torosantucci R, Schöneich C, Jiskoot W. Oxidation of therapeutic proteins and peptides: structural and biological consequences. Pharm Res. 2014;31:541–53.CrossRefPubMedGoogle Scholar
  11. 11.
    Bee JS, Stevenson JL, Mehta B, Svitel J, Pollastrini J, Platz R, et al. Response of a concentrated monoclonal antibody formulation to high shear. Biotechnol Bioeng. 2009;103(5):936–43.CrossRefPubMedCentralPubMedGoogle Scholar
  12. 12.
    Rombach-Riegraf V, Karle A, Wolf B, Sorde L, Koepke S, Rombach-Riegraf V, et al. Aggregation of human recombinant monoclonal antibodies influences the capacity of dendritic cells to stimulate adaptive T-cell responses in vitro. PLoS One. 2014;9(1):e86322.CrossRefPubMedCentralPubMedGoogle Scholar
  13. 13.
    Filipe V, Jiskoot W, Basmeleh AH, Halim A, Schellekens H, Brinks V. Immunogenicity of different stressed IgG monoclonal antibody formulations in immune tolerant transgenic mice. MAbs. 2012;4(6):740–52.CrossRefPubMedCentralPubMedGoogle Scholar
  14. 14.
    Filipe V, Poole R, Kutscher M, Fourier K, Braeckman K, Jiskoot W. Fluorescence single particle tracking for the characterization of submicron protein aggregates in biological fluids and complex formulations. Pharm Res. 2011;28(5):1112–20.CrossRefPubMedCentralPubMedGoogle Scholar
  15. 15.
    Filipe V, Poole R, Oladunjoye O, Braeckmans K, Jiskoot W. Detection and characterization of subvisible aggregates of monoclonal IgG in serum. Pharm Res. 2012;29(8):2202–12.CrossRefPubMedCentralPubMedGoogle Scholar
  16. 16.
    van Vollenhoven RF, Emery P, Bingham III CO, Keystone EC, Fleischmann R, Furst DE, et al. Longterm Safety of Patients Receiving Rituximab in Rheumatoid Arthritis Clinical Trials. J Rheumatol. 2010;37(3):558–67.CrossRefPubMedGoogle Scholar
  17. 17.
    Herceptin® [package insert] Genentech Inc, San Francisco, USA. http://www.gene.com/download/pdf/herceptin_prescribing.pdf
  18. 18.
    Bryson CJ, Jones TD, Baker MP. Prediction of Immunogenicity of Therapeutic Proteins, Validity of Computational Tools. Biodrugs. 2010;24(1):1–8.CrossRefPubMedGoogle Scholar
  19. 19.
    Sojka DK, Bruniquel D, Schwartz RH, Singh NJ. IL-2 secretion by CD4+ T cells in vitro is rapid, transient, and influences by TCR-specific competition. J Immuno. 2004;172(10):6136–43.Google Scholar
  20. 20.
    Ozaki K, Spolski R, Feng CG, Qi CF, Chneg J, Sher A, et al. A critical role for IL-21 in regulating immunoglobulin production. Science. 2002;298(5598):1630–4.CrossRefPubMedGoogle Scholar
  21. 21.
    Zotos D, Coquet JM, Zhang Y, Light A, D’Kosta K, Kallies A, et al. IL-21 regulates germinal center B cell differentiation and proliferation through a B cell-intrinsic mechanism. J Exp Med. 2010;207(2):365–78.CrossRefPubMedCentralPubMedGoogle Scholar
  22. 22.
    Feng X, Wang D, Chen J, Lu L, Hua B, Li X, et al. Inhibition of Aberrant Circulating Tfh Cell Proportions by Corticosteroids in Patients with Systemic Lupus Erythematosus. PLoS One. 2012;7(12):e51982.CrossRefPubMedCentralPubMedGoogle Scholar
  23. 23.
    Spolski R, Leonard WJ. IL-21 is an immune activator that also mediates suppression via IL-10. Crit Rev Immunol. 2010;30(6):559–70.CrossRefPubMedGoogle Scholar
  24. 24.
    Joubert MK, Luo Q, Nashed-Samuel Y, Wypych J, Narhi LO. Classification and characterization of therapeutic antibody aggregates. J Biol Chem. 2011;286(28):25118–33.CrossRefPubMedCentralPubMedGoogle Scholar
  25. 25.
    Rönnelid J, Tejde A, Mathsson L, Nilsson-Ekdahl K, Nilsson B. Immune complexes from SLE sera induce IL10 production from normal peripheral blood mononuclear cells by an FcgammaRII dependent mechanism: implications for a possible vicious cycle maintaining B cell hyperactivity in SLE. Ann Rheum Dis. 2003;62(1):37–42.CrossRefPubMedCentralPubMedGoogle Scholar
  26. 26.
    Ahmadi M, Emery DC, Morgan DJ. Prevention of both direct and cross-priming of antitumor CD8+ T-cell responses following overproduction of prostaglandin E2 by tumor cells in vivo. Cancer Res. 2008;68(18):7520–9.CrossRefPubMedCentralPubMedGoogle Scholar
  27. 27.
    Steinbrink K, Wolfl M, Jonuleit H, Knop J, Enk AH. Induction of tolerance by IL-10-treated dendritic cells. J Immunol. 1997;159:4772–80.PubMedGoogle Scholar
  28. 28.
    McBride JM, Jung T, de Vries JE, Aversa G. IL-10 alters DC function via modulation of cell surface molecules resulting in impaired T-cell responses. Cell Immunol. 2002;215:162–72.CrossRefPubMedGoogle Scholar
  29. 29.
    Enk AH, Jonuleit H, Saloga J, Knop J. Dendritic cells as mediators of tumor-induced tolerance in metastatic melanoma. Int J Cancer. 1997;73:309–16.CrossRefPubMedGoogle Scholar
  30. 30.
    Dercamp C, Chemin K, Caux C, Trinchieri G, Vicari AP. Distinct and overlapping roles of interleukin-10 and CD25+ regulatory T cells in the inhibition of antitumor CD8 T-cell responses. Cancer Res. 2005;65:8479–86.CrossRefPubMedGoogle Scholar
  31. 31.
    Pieters J, Horstman H, Bakk O, Griffiths G, Lipp J. Intracellular transport and localization of major histocompatibility complex class II molecules and associated invariant chain. J Cell Biol. 1991;115(5):1213–23.CrossRefPubMedGoogle Scholar
  32. 32.
    Randolph GJ, Inaba K, Robbiani DF, Steinman RM, Muller WA. Differentiation of phagocytic monocytes into lymph node dendritic cells in vivo. Immunity. 1999;11(6):753–61.CrossRefPubMedGoogle Scholar
  33. 33.
    Vecchi A, Massimiliano L, Ramponi S, Luini W, Bernasconi S, Bonecchi R, et al. Differential responsiveness to constitutive vs. inducible chemokines of immature and mature mouse dendritic cells. J Leukoc Biol. 1999;66(3):489–94.PubMedGoogle Scholar
  34. 34.
    Mianowska B, Szadkowska A, Pietrzak I, Zmysłowska A, Wegner O, Tomczonek J, et al. Immunogenicity of different brands of human insulin and rapid-acting insulin analogs in insulin-naïve children with type 1 diabetes. Pediatr Diabetes. 2011;12(2):78–84.CrossRefPubMedGoogle Scholar
  35. 35.
    Fathallah AM, Bankert RB, Balu-Iyer SV. Immunogenicity of subcutaneously administered therapeutic proteins–a mechanistic perspective. AAPS J. 2013;15(4):897–900.CrossRefPubMedCentralPubMedGoogle Scholar
  36. 36.
    Porter CJ, Charman SA. Lymphatic transport of proteins after subcutaneous administration. J Pharm Sci. 2000;89(3):297–310.CrossRefPubMedGoogle Scholar
  37. 37.
    Ruedl C, Koebel P, Bachmann M, Hess M, Karjalainen K. Anatomical origin of dendritic cells determines their life span in peripheral lymph nodes. J Immunol. 2000;165(9):4910–6.CrossRefPubMedGoogle Scholar
  38. 38.
    Hawe A, Kasper JC, Friess W, Jiskoot W. Structural properties of monoclonal antibody aggregates induced by freeze-thawing and thermal stress. Eur J Pharm Sci. 2009;38(2):79–87.CrossRefPubMedGoogle Scholar
  39. 39.
    Hermeling S, Aranha L, Damen JMA, Slijper M, Schellekens H, Crommelin DJA, et al. Structural characterization and immunogenicity in wild-type and immune tolerant mice of degraded recombinant human interferon alpha2b. Pharm Res. 2005;22(12):1997–2006.CrossRefPubMedGoogle Scholar
  40. 40.
    Brinks V, Weinbuch D, Baker M, Dean Y, Stas P, Kostense S, et al. Preclinical models used for immunogenicity prediction of therapeutic proteins. Pharm Res. 2013;30(7):1719–28.Google Scholar
  41. 41.
    Fradkin AH, Carpenter JF, Randolph TW. Glass particles as an adjuvant: a model for adverse immunogenicity of therapeutic proteins. J Pharm Sci. 2011;100(11):4953–64.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Maryam Ahmadi
    • 1
  • Christine J. Bryson
    • 1
    • 4
  • Edward A. Cloake
    • 1
  • Katie Welch
    • 1
  • Vasco Filipe
    • 2
    • 5
  • Stefan Romeijn
    • 2
  • Andrea Hawe
    • 3
  • Wim Jiskoot
    • 2
  • Matthew P. Baker
    • 1
  • Mark H. Fogg
    • 1
    Email author
  1. 1.Antitope Ltd, Babraham Research CampusCambridgeUK
  2. 2.Division of Drug Delivery Technology, Leiden Academic Centre for Drug ResearchLeiden UniversityLeidenThe Netherlands
  3. 3.Coriolis PharmaMartinsriedGermany
  4. 4.Department of HaematologyCambridge University HospitalsCambridgeUK
  5. 5.AdociaLyonFrance

Personalised recommendations