Skip to main content
Log in

Reduction-responsive Crosslinked Micellar Nanoassemblies for Tumor-targeted Drug Delivery

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

The purpose of the study was to devise and evaluate crosslinked nanoassemblies to achieve enhanced drug delivery to tumors.

Methods

A novel copolymer comprised of polyethylene glycol 5000 (PEG114), Vitamin E (VE) and thioctic acid (TA) with a molar ratio of PEG114:VE:TA at 1:4:4 was synthesized. The resulting PEG114-VE4-TA4 copolymer self-assembled into micelles, which formed polydisulfide crosslinks catalyzed by dithiothreitol. Employing paclitaxel as a model drug, the crosslinked PEG114-VE4-TA4 micelles were characterized for the physicochemical and biological properties. The pharmacokinetics and anticancer efficacy of paclitaxel-loaded crosslinked PEG114-VE4-TA4 micelles were assessed in a human ovarian cancer xenograft murine model.

Results

The crosslinked PEG114-VE4-TA4 micelles demonstrated markedly improved thermodynamic and kinetic stability. The disulfide crosslinks were responsive to the intracellular level of glutathione, which caused rapid disassembly of the micelles and accelerated drug release. Intravenous administration of paclitaxel-loaded crosslinked PEG114-VE4-TA4 micelles yielded approximately 3-fold and 5-fold higher plasma concentration than the non-crosslinked micelles and Taxol®, respectively, leading to increased drug accumulation in the tumor. Importantly, paclitaxel-loaded crosslinked micelles exerted superior tumor growth repression compared to the non-crosslinked counterparts and Taxol®.

Conclusions

These results suggest that the crosslinked PEG114-VE4-TA4 nanocarrier system is a promising platform for the delivery of hydrophobic anticancer agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme I
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

B-CMs:

Blank crosslinked micelles

B-NCMs:

Blank non-crosslinked micelles

CMC:

Critical micelle concentration

DiD:

1,10-dioctadecyl-3,3,30,30-tetramethylindodicarbocyanine perchlorate

DiI:

1,1’-dioctadecyl-3,3,3’,3’-tetramethylindocarbocyanine perchlorate

DiO:

3,3’-dioctadecyloxacarbocyanine perchlorate

DLS:

Dynamic light scattering

DP-CMs:

DiD/paclitaxel-dual loaded crosslinked micelles

DP-NCMs:

DiD/paclitaxel-dual loaded non-crosslinked micelles

DTT:

Dithiothreitol

EPR:

Enhanced permeability and retention

FRET:

Fluorescence energy transfer

GSH:

Glutathione

H&E:

Hematoxylin and eosin

NIR:

Near Infrared

P-CMs:

Paclitaxel-loaded crosslinked micelles

PCNA:

Proliferating cell nuclear antigen

P-NCMs:

Paclitaxel-loaded non-crosslinked micelles

SDS:

Sodium dodecyl sulfate

TA:

Thioctic acid

TEM:

Transmission electron microscopy

VE:

Vitamin E

References

  1. Cheng Z, Zaki AAI, Hui JZ, Muzykantov VR, Tsourkas A. Multifunctional nanoparticles: cost versus benefit of adding targeting and imaging capabilities. Science. 2012;338(6109):903–10.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Kwon GS, Kataoka K. Block copolymer micelles as long-circulating drug vehicles. Adv Drug Deliv Rev. 2012;64:237–45.

    Article  Google Scholar 

  3. Gong J, Chen M, Zheng Y, Wang S, Wang Y. Polymeric micelles drug delivery system in oncology. J Control Release. 2012;159(3):312–23.

    Article  CAS  PubMed  Google Scholar 

  4. Maeda H, Nakamura H, Fang J. The EPR effect for macromolecular drug delivery to solid tumors: improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Adv Drug Deliv Rev. 2013;65(1):71–9.

    Article  CAS  PubMed  Google Scholar 

  5. Owen SC, Chan DP, Shoichet MS. Polymeric micelle stability. Nano Today. 2012;7(1):53–65.

    Article  CAS  Google Scholar 

  6. Chen H, Kim S, He W, Wang H, Low PS, Park K, et al. Fast release of lipophilic agents from circulating PEG-PDLLA micelles revealed by in vivo Förster resonance energy transfer imaging. Langmuir. 2008;24(10):5213–7.

    Article  CAS  PubMed  Google Scholar 

  7. O’Reilly RK, Hawker CJ, Wooley KL. Cross-linked block copolymer micelles: functional nanostructures of great potential and versatility. Chem Soc Rev. 2006;35(11):1068–83.

    Article  PubMed  Google Scholar 

  8. Read ES, Armes SP. Recent advances in shell cross-linked micelles. Chem Comm. 2007;29:3021–35.

    Article  PubMed  Google Scholar 

  9. van Nostrum CF. Covalently cross-linked amphiphilic block copolymer micelles. Soft Matter. 2011;7(7):3246–59.

    Article  Google Scholar 

  10. Shao Y, Huang W, Shi C, Atkinson ST, Luo J. Reversibly crosslinked nanocarriers for on-demand drug delivery in cancer treatment. Ther Deliv. 2012;3(12):1409–27.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Li Y, Xiao K, Luo J, Xiao W, Lee JS, Gonik AM, et al. Well-defined, reversible disulfide cross-linked micelles for on-demand paclitaxel delivery. Biomaterials. 2011;32(27):6633–45.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Lee SY, Kim S, Tyler JY, Park K, Cheng JX. Blood-stable, tumor-adaptable disulfide bonded mPEG-(Cys)4-PDLLA micelles for chemotherapy. Biomaterials. 2013;34(2):552–61.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Koo AN, Min KH, Lee HJ, Lee SU, Kim K, Kwon IC, et al. Tumor accumulation and antitumor efficacy of docetaxel-loaded core-shell-corona micelles with shell-specific redox-responsive cross-links. Biomaterials. 2012;33(5):1489–99.

    Article  CAS  PubMed  Google Scholar 

  14. Wei R, Cheng L, Zheng M, Cheng R, Meng F, Deng C, et al. Reduction-responsive disassemblable core-cross-linked micelles based on poly(ethylene glycol)-b-poly(N-2-hydroxypropyl methacrylamide)-lipoic acid conjugates for triggered intracellular anticancer drug release. Biomacromolecules. 2012;13(8):2429–38.

    Article  CAS  PubMed  Google Scholar 

  15. Wu L, Zou Y, Deng C, Cheng R, Meng F, Zhong Z. Intracellular release of doxorubicin from core-crosslinked polypeptide micelles triggered by both pH and reduction conditions. Biomaterials. 2013;34(21):5262–72.

    Article  CAS  PubMed  Google Scholar 

  16. Schafer FQ, Buettner GR. Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic Biol Med. 2001;30(11):1191–212.

    Article  CAS  PubMed  Google Scholar 

  17. Kuppusamy P, Li H, Ilangovan G, Cardounel AJ, Zweier JL, Yamada K, et al. Noninvasive imaging of tumor redox status and its modification by tissue glutathione levels. Cancer Res. 2002;62(1):307–12.

    CAS  PubMed  Google Scholar 

  18. Zhang Z, Tan S, Feng SS. Vitamin E TPGS as a molecular biomaterial for drug delivery. Biomaterials. 2012;33(19):4889–906.

    Article  CAS  PubMed  Google Scholar 

  19. Mu L, Elbayoumi TA, Torchilin VP. Mixed micelles made of poly(ethylene glycol)-phosphatidylethanolamine conjugate and D-α-tocopheryl polyethylene glycol 1000 succinate as pharmaceutical nanocarriers for camptothecin. Int J Pharm. 2005;306(1):142–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Chandran T, Katragadda U, Teng Q, Tan C. Design and evaluation of micellar nanocarriers for 17-allyamino-17-demethoxygeldanamycin (17-AAG). Int J Pharm. 2010;392(1):170–7.

    Article  CAS  PubMed  Google Scholar 

  21. Wang J, Sun J, Chen Q, Gao Y, Li L, Li H, et al. Star-shape copolymer of lysine-linked di-tocopherol polyethylene glycol 2000 succinate for doxorubicin delivery with reversal of multidrug resistance. Biomaterials. 2012;33(28):6877–88.

    Article  CAS  PubMed  Google Scholar 

  22. Lu J, Huang Y, Zhao W, Chen Y, Li J, Gao X, et al. Design and characterization of PEG-derivatized Vitamin E as a nanomicellar formulation for delivery of paclitaxel. Mol Pharm. 2013;10(8):2880–90.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Lawson KA, Anderson K, Menchaca M, Atkinson J, Sun L, Knight V, et al. Novel Vitamin E analogue decreases syngeneic mouse mammary tumor burden and reduces lung metastasis. Mol Cancer Ther. 2003;2(5):437–44.

    CAS  PubMed  Google Scholar 

  24. Katragadda U, Fan W, Wang Y, Teng Q, Tan C. Combined delivery of paclitaxel and tanespimycin via micellar nanocarriers: pharmacokinetics, efficacy and metabolomic analysis. PLoS One. 2013;8(3):e58619.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Held KD, Melder DC. Toxicity of the sulfhydryl-containing radioprotector dithiothreitol. Radiat Res. 1987;112(3):544–54.

    Article  CAS  PubMed  Google Scholar 

  26. Carmack M, Kelley CJ, Harrison Jr SD. Optically active dithiothreitol. Toxicity and radiation-protective activity. J Med Chem. 1972;15(6):600–3.

    Article  CAS  PubMed  Google Scholar 

  27. Aguiar J, Carpena P, Molina-Bolivar JA, Ruiz CC. On the determination of the critical micelle concentration by the pyrene 1 : 3 ratio method. J Colloid Interface Sci. 2003;258(1):116–22.

    Article  CAS  Google Scholar 

  28. Sadownik A, Stefely J, Regen SL. Polymerized liposomes formed under extremely mild conditions. J Am Chem Soc. 1986;108(24):7789–91.

    Article  CAS  PubMed  Google Scholar 

  29. Li YL, Zhu L, Liu Z, Cheng R, Meng F, Cui JH, et al. Reversibly stabilized multifunctional dextran nanoparticles efficiently deliver doxorubicin into the nuclei of cancer cells. Angew Chem Int Ed Engl. 2009;48(52):9914–8.

    Article  CAS  PubMed  Google Scholar 

  30. Kang N, Perron ME, Prud’homme RE, Zhang Y, Gaucher G, Leroux JC. Stereocomplex block copolymer micelles: core-shell nanostructures with enhanced stability. Nano Lett. 2005;5(2):315–9.

    Article  CAS  PubMed  Google Scholar 

  31. Bruce CD, Berkowitz ML, Perera L, Forbes MDE. Molecular dynamics simulation of sodium dodecyl sulfate micelle in water: micellar structural characteristics and counterion distribution. J Phys Chem B. 2002;106(15):3788–93.

    Article  CAS  Google Scholar 

  32. Berney C, Danuser G. FRET or no FRET: a quantitative comparison. Biophys J. 2003;84(6):3992–4010.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Rejman J, Oberle V, Zuhorn IS, Hoekstra D. Size-dependent internalization of particles via the pathways of clathrin-and caveolae-mediated endocytosis. Biochem J. 2004;377(1):159–69.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Peng L, Liu RW, Marik J, Wang XB, Takada Y, Lam KS. Combinatorial chemistry identifies high-affinity peptidomimetics against α4β1 integrin for in vivo tumor imaging. Nat Chem Biol. 2006;2(7):381–9.

    Article  CAS  PubMed  Google Scholar 

  35. Kim SC, Kim DW, Shim YH, Bang JS, Oh HS, Kim SW, et al. In vivo evaluation of polymeric micellar paclitaxel formulation: toxicity and efficacy. J Control Release. 2001;72(1):191–202.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

This work was supported by the National Institutes of Health grant R15 CA152860 to C.T.

Wei Fan and Yingzhe Wang contributed equally to the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chalet Tan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 1519 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, W., Wang, Y., Dai, X. et al. Reduction-responsive Crosslinked Micellar Nanoassemblies for Tumor-targeted Drug Delivery. Pharm Res 32, 1325–1340 (2015). https://doi.org/10.1007/s11095-014-1537-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-014-1537-6

KEY WORDS

Navigation