Skip to main content
Log in

Vitamin D Receptor Activation Induces P-Glycoprotein and Increases Brain Efflux of Quinidine:An Intracerebral Microdialysis Study in Conscious Rats

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Since the vitamin D receptor (VDR) was found to up-regulate cerebral P-glycoprotein expression in vitro and in mice, we extend our findings to rats by assessing the effect of rat Vdr activation on brain efflux of quinidine, a P-gp substrate that is eliminated primarily by cytochrome P450 3a.

Methods

We treated rats with vehicle or the active VDR ligand, 1α,25-dihydroxyvitamin D3 [1,25(OH)2D3] (4.8 or 6.4 nmol/kg i.p. every 2nd day ×4) and examined P-gp expression and cerebral quinidine disposition via microdialysis in control and treatment studies conducted longitudinally in the same rat.

Results

The 6.4 nmol/kg 1,25(OH)2D3 dose increased cerebral P-gp expression 1.75-fold whereas hepatic Cyp3a remained unchanged. Although there was no change in systemic clearance elicited by 1,25(OH)2D3, brain extracellular fluid quinidine concentrations were lower in treated rats. We noted that insertion of indwelling catheters increased plasma protein binding of quinidine and serial sampling decreased the blood:plasma concentration ratio, factors that alter distribution ratios in microdialysis studies. After appropriate correction, KECF/P,uu and KECF/B,uu, or ratios of quinidine unbound concentrations in brain extracellular fluid to plasma or blood at steady-state, were more than halved.

Conclusion

We demonstrate that VDR activation increases cerebral P-gp expression and delimits brain penetration of P-gp substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

1,25(OH)2D3 :

1α,25-dihydroxyvitamin D3

aCSF:

Artificial cerebrospinal fluid

BBB:

Blood–brain barrier

Bcrp/BCRP:

Rodent/human breast cancer resistance protein

CAR:

Constitutive androstane receptor

CNS:

Central nervous system

Cyp:

Rodent cytochrome P450

ECF:

Extracellular fluid

Gapdh:

Glyceraldehyde 3-phosphate dehydrogenase

GR:

Glucocorticoid receptor

Mdr1/MDR1:

Rodent/human multidrug resistance protein 1

Mrp/MRP:

Rodent/human multidrug resistance-associated protein

NR:

Nuclear receptors

PBS:

Phosphate-buffered saline

P-gp:

P-glycoprotein

PMSF:

Phenylmethylsulfonyl fluoride

PXR:

Pregnane X receptor

qPCR:

Quantitative real-time polymerase chain reaction

SDS-PAGE:

Sodium dodecyl sulfate polyacrylamide gel electrophoresis

Vdr/VDR:

Rodent/human vitamin D receptor

References

  1. Abbott NJ. Blood–brain barrier structure and function and the challenges for CNS drug delivery. J Inherit Metab Dis. 2013;36:437–49.

    Article  CAS  PubMed  Google Scholar 

  2. Lee G, Dallas S, Hong M, Bendayan R. Drug transporters in the central nervous system: brain barriers and brain parenchyma considerations. Pharmacol Rev. 2001;53:569–96.

    Article  CAS  PubMed  Google Scholar 

  3. Wang X, Sykes DB, Miller DS. Constitutive androstane receptor-mediated up-regulation of ATP-driven xenobiotic efflux transporters at the blood–brain barrier. Mol Pharmacol. 2010;78:376–83.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Bauer B, Hartz AM, Fricker G, Miller DS. Pregnane X receptor up-regulation of P-glycoprotein expression and transport function at the blood–brain barrier. Mol Pharmacol. 2004;66:413–9.

    CAS  PubMed  Google Scholar 

  5. Narang VS, Fraga C, Kumar N, Shen J, Throm S, Stewart CF, et al. Dexamethasone increases expression and activity of multidrug resistance transporters at the rat blood–brain barrier. Am J Physiol Cell Physiol. 2008;295:C440–50.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Chow EC, Durk MR, Cummins CL, Pang KS. 1α,25-Dihydroxyvitamin D3 up-regulates P-glycoprotein via the vitamin D receptor and not farnesoid X receptor in both fxr(−/−) and fxr(+/+) mice and increased renal and brain efflux of digoxin in mice in vivo. J Pharmacol Exp Ther. 2011;337:846–59.

    Article  CAS  PubMed  Google Scholar 

  7. Durk MR, Chan GN, Campos CR, Peart JC, Chow EC, Lee E, et al. 1α,25-Dihydroxyvitamin D3-liganded vitamin D receptor increases expression and transport activity of P-glycoprotein in isolated rat brain capillaries and human and rat brain microvessel endothelial cells. J Neurochem. 2012;123:944–53.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Burris TP, Solt LA, Wang Y, Crumbley C, Banerjee S, Griffett K, et al. Nuclear receptors and their selective pharmacologic modulators. Pharmacol Rev. 2013;65:710–78.

    Article  PubMed  Google Scholar 

  9. Prufer K, Veenstra TD, Jirikowski GF, Kumar R. Distribution of 1,25-dihydroxyvitamin D3 receptor immunoreactivity in the rat brain and spinal cord. J Chem Neuroanat. 1999;16:135–45.

    Article  CAS  PubMed  Google Scholar 

  10. Eyles DW, Smith S, Kinobe R, Hewison M, McGrath JJ. Distribution of the vitamin D receptor and 1 α-hydroxylase in human brain. J Chem Neuroanat. 2005;29:21–30.

    Article  CAS  PubMed  Google Scholar 

  11. Fan J, Liu S, Du Y, Morrison J, Shipman R, Pang KS. Up-regulation of transporters and enzymes by the vitamin D receptor ligands, 1α,25-dihydroxyvitamin D3 and vitamin D analogs, in the Caco-2 cell monolayer. J Pharmacol Exp Ther. 2009;330:389–402.

    Article  CAS  PubMed  Google Scholar 

  12. de Lange EC, Danhof M, de Boer AG, Breimer DD. Critical factors of intracerebral microdialysis as a technique to determine the pharmacokinetics of drugs in rat brain. Brain Res. 1994;666:1–8.

    Article  PubMed  Google Scholar 

  13. Martignoni M, Groothuis G, de Kanter R. Comparison of mouse and rat cytochrome P450-mediated metabolism in liver and intestine. Drug Metab Dispos. 2006;34:1047–54.

    CAS  PubMed  Google Scholar 

  14. Fremstad D, Jacobsen S, Lunde KM. Influence of serum protein binding on the pharmacokinetics of quinidine in normal and anuric rats. Acta Pharmacol Toxicol (Copenh). 1977;41:161–76.

    Article  CAS  Google Scholar 

  15. Teraoand N, Shen DD. Alterations in serum protein binding and pharmacokinetics of l-propranolol in the rat elicited by the presence of an indwelling venous catheter. J Pharmacol Exp Ther. 1983;227:369–75.

    Google Scholar 

  16. Liu L, Mak E, Tirona RG, Tan E, Novikoff PM, Wang P, et al. Vascular binding, blood flow, transporter, and enzyme interactions on the processing of digoxin in rat liver. J Pharmacol Exp Ther. 2005;315:433–48.

    Article  CAS  PubMed  Google Scholar 

  17. de Lange EC, Danhof M, de Boer AG, Breimer DD. Methodological considerations of intracerebral microdialysis in pharmacokinetic studies on drug transport across the blood–brain barrier. Brain Res Brain Res Rev. 1997;25:27–49.

    Article  PubMed  Google Scholar 

  18. Chan GN, Saldivia V, Yang Y, Pang H, de Lannoy I, Bendayan R. In vivo induction of P-glycoprotein expression at the mouse blood–brain barrier: an intracerebral microdialysis study. J Neurochem. 2013;127:342–52.

    Article  CAS  PubMed  Google Scholar 

  19. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193:265–75.

    CAS  PubMed  Google Scholar 

  20. Jonesand G, Tenenhouse HS. 1,25(OH)2D, the preferred substrate for CYP24. J Bone Miner Res. 2002;17:179–81.

    Article  Google Scholar 

  21. Chow EC, Maeng HJ, Liu S, Khan AA, Groothuis GM, Pang KS. 1α,25-Dihydroxyvitamin D3 triggered vitamin D receptor and farnesoid X receptor-like effects in rat intestine and liver in vivo. Biopharm Drug Dispos. 2009;30:457–75.

    Article  CAS  PubMed  Google Scholar 

  22. Sugihara N, Furuno K, Kita N, Murakami T, Yata N. Distribution of quinidine in rats with carbon tetrachloride-intoxicated hepatic disease. J Pharmacobiodyn. 1992;15:167–74.

    Article  CAS  PubMed  Google Scholar 

  23. Pollack GM, Brouwer KL, Demby KB, Jones JA. Determination of hepatic blood flow in the rat using sequential infusions of indocyanine green or galactose. Drug Metab Dispos. 1990;18:197–202.

    CAS  PubMed  Google Scholar 

  24. Sato Y, Asoh T, Oizumi K. High prevalence of vitamin D deficiency and reduced bone mass in elderly women with Alzheimer’s disease. Bone. 1998;23:555–7.

    Article  CAS  PubMed  Google Scholar 

  25. Wilkins CH, Sheline YI, Roe CM, Birge SJ, Morris JC. Vitamin D deficiency is associated with low mood and worse cognitive performance in older adults. Am J Geriatr Psychiatry. 2006;14:1032–40.

    Article  PubMed  Google Scholar 

  26. Evatt ML, Delong MR, Khazai N, Rosen A, Triche S, Tangpricha V. Prevalence of vitamin d insufficiency in patients with Parkinson disease and Alzheimer disease. Arch Neurol. 2008;65:1348–52.

    Article  PubMed Central  PubMed  Google Scholar 

  27. Hollo A, Clemens Z, Kamondi A, Lakatos P, Szucs A. Correction of vitamin D deficiency improves seizure control in epilepsy: a pilot study. Epilepsy Behav. 2012;24:131–3.

    Article  PubMed  Google Scholar 

  28. Kalueff AV, Minasyan A, Keisala T, Kuuslahti M, Miettinen S, Tuohimaa P. Increased severity of chemically induced seizures in mice with partially deleted Vitamin D receptor gene. Neurosci Lett. 2006;394:69–73.

    Article  CAS  PubMed  Google Scholar 

  29. Brown J, Bianco JI, McGrath JJ, Eyles DW. 1,25-Dihydroxyvitamin D3 induces nerve growth factor, promotes neurite outgrowth and inhibits mitosis in embryonic rat hippocampal neurons. Neurosci Lett. 2003;343:139–43.

    Article  CAS  PubMed  Google Scholar 

  30. Orme RP, Bhangal MS, Fricker RA. Calcitriol imparts neuroprotection in vitro to midbrain dopaminergic neurons by upregulating GDNF expression. PLoS ONE. 2013;8:e62040.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Brewer LD, Thibault V, Chen KC, Langub MC, Landfield PW, Porter NM. Vitamin D hormone confers neuroprotection in parallel with downregulation of L-type calcium channel expression in hippocampal neurons. J Neurosci. 2001;21:98–108.

    CAS  PubMed  Google Scholar 

  32. Zanatta L, Goulart PB, Goncalves R, Pierozan P, Winkelmann-Duarte EC, Woehl VM, et al. 1alpha,25-dihydroxyvitamin D(3) mechanism of action: modulation of L-type calcium channels leading to calcium uptake and intermediate filament phosphorylation in cerebral cortex of young rats. Biochim Biophys Acta. 2012;1823:1708–19.

    Article  CAS  PubMed  Google Scholar 

  33. Kim RB. Drugs as P-glycoprotein substrates, inhibitors, and inducers. Drug Metab Rev. 2002;34:47–54.

    Article  CAS  PubMed  Google Scholar 

  34. Lam FC, Liu R, Lu P, Shapiro AB, Renoir JM, Sharom FJ, et al. β-Amyloid efflux mediated by p-glycoprotein. J Neurochem. 2001;76:1121–28.

    Article  CAS  PubMed  Google Scholar 

  35. Hammarlund-Udenaes M. Active-site concentrations of chemicals - are they a better predictor of effect than plasma/organ/tissue concentrations? Basic Clin Pharmacol Toxicol. 2010;106:215–20.

    Article  CAS  PubMed  Google Scholar 

  36. Shuaib A, Xu K, Crain B, Siren AL, Feuerstein G, Hallenbeck J, et al. Assessment of damage from implantation of microdialysis probes in the rat hippocampus with silver degeneration staining. Neurosci Lett. 1990;112:149–54.

    Article  CAS  PubMed  Google Scholar 

  37. de Lange EC, Danhof M, Zurcher C, de Boer AG, Breimer DD. Repeated microdialysis perfusions: periprobe tissue reactions and BBB permeability. Brain Res. 1995;702:261–5.

    Article  PubMed  Google Scholar 

  38. de Lange EC, de Bock G, Schinkel AH, de Boer AG, Breimer DD. BBB transport and P-glycoprotein functionality using MDR1A (−/−) and wild-type mice. Total brain versus microdialysis concentration profiles of rhodamine-123. Pharm Res. 1998;15:1657–65.

    Article  PubMed  Google Scholar 

  39. Liu X, Van Natta K, Yeo H, Vilenski O, Weller PE, Worboys PD, et al. Unbound drug concentration in brain homogenate and cerebral spinal fluid at steady state as a surrogate for unbound concentration in brain interstitial fluid. Drug Metab Dispos. 2009;37:787–93.

    Article  CAS  PubMed  Google Scholar 

  40. Syvanen S, Schenke M, van den Berg DJ, Voskuyl RA, de Lange EC. Alteration in P-glycoprotein functionality affects intrabrain distribution of quinidine more than brain entry-a study in rats subjected to status epilepticus by kainate. AAPS J. 2012;14:87–96.

    Article  PubMed Central  PubMed  Google Scholar 

  41. Doran A, Obach RS, Smith BJ, Hosea NA, Becker S, Callegari E, et al. The impact of P-glycoprotein on the disposition of drugs targeted for indications of the central nervous system: evaluation using the MDR1A/1B knockout mouse model. Drug Metab Dispos. 2005;33:165–74.

    Article  CAS  PubMed  Google Scholar 

  42. Schmiedlin-Ren P, Thummel KE, Fisher JM, Paine MF, Lown KS, Watkins PB. Expression of enzymatically active CYP3A4 by Caco-2 cells grown on extracellular matrix-coated permeable supports in the presence of 1α,25-dihydroxy vitamin D3. Mol Pharmacol. 1997;51:741–54.

    CAS  PubMed  Google Scholar 

  43. Khan AA, Chow EC, van Loenen-Weemaes AM, Porte RJ, Pang KS, Groothuis GM. Comparison of effects of VDR versus PXR, FXR and GR ligands on the regulation of CYP3A isozymes in rat and human intestine and liver. Eur J Pharm Sci. 2009;37:115–25.

    Article  CAS  PubMed  Google Scholar 

  44. Cong D, Doherty M, Pang KS. A new physiologically based, segregated-flow model to explain route-dependent intestinal metabolism. Drug Metab Dispos. 2000;28:224–35.

    CAS  PubMed  Google Scholar 

  45. Woodland C, Huang TT, Gryz E, Bendayan R, Fawcett JP. Expression, activity and regulation of CYP3A in human and rodent brain. Drug Metab Rev. 2008;40:149–68.

    Article  CAS  PubMed  Google Scholar 

  46. Chow EC, Sun H, Khan AA, Groothuis GM, Pang KS. Effects of 1α,25-dihydroxyvitamin D3 on transporters and enzymes of the rat intestine and kidney in vivo. Biopharm Drug Dispos. 2010;31:91–108.

    CAS  PubMed  Google Scholar 

  47. M. Rodriguez, J.R. Munoz-Castaneda, Y. Almaden. Therapeutic Use Of Calcitriol. Curr Vasc Pharmacol (2013).

  48. Muindi JR, Peng Y, Potter DM, Hershberger PA, Tauch JS, Capozzoli MJ, et al. Pharmacokinetics of high-dose oral calcitriol: results from a phase 1 trial of calcitriol and paclitaxel. Clin Pharmacol Ther. 2002;72:648–59.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

The authors have no conflict of interest to declare. This work was supported by the Canadian Institutes of Health Research (CIHR) and by NoAb BioDiscoveries (NoAb) and InterVivo Solutions (IVS). Matthew R. Durk was supported by a CIHR Strategic Training Grant in Biological Therapeutics and a Pfizer Canada Graduate Scholarship in Science and Technology. Additionally, we wish to thank employees of IVS, Sophie Pan and Julia Izhakova, for the bioanalysis of the microsomal, protein binding and blood; plasma ratio study samples and Victor Saldivia for carrying out the blood: plasma ratio studies. David K. H. Lee (NoAb and IVS) is thanked for approval of our collaborative efforts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Sandy Pang.

Additional information

MRD and JF contributed equally as first authors and K. Sandy Pang and Inés A.M. de Lannoy are equal co-senior authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Durk, M.R., Fan, J., Sun, H. et al. Vitamin D Receptor Activation Induces P-Glycoprotein and Increases Brain Efflux of Quinidine:An Intracerebral Microdialysis Study in Conscious Rats. Pharm Res 32, 1128–1140 (2015). https://doi.org/10.1007/s11095-014-1524-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-014-1524-y

KEY WORDS

Navigation