Pharmaceutical Research

, Volume 32, Issue 3, pp 1094–1104 | Cite as

Could Albumin Affect the Self-Assembling Properties of a Block Co-polymer System and Drug Release? An In-Vitro Study

  • Diego R. Perinelli
  • Giulia Bonacucina
  • Stefania Pucciarelli
  • Marco Cespi
  • Luca Casettari
  • Valeria Polzonetti
  • Francesco Martino Carpi
  • Giovanni F. Palmieri
Research Paper



This work investigated the influence of a model protein, bovine serum albumin (BSA), on the properties of a thermogelling formulation intended for administration inside body compartments where there is high albumin content, as in the case of inflamed joints; it also explored the relation between the variation of these properties and release performance of methotrexate (MTX), a drug used to treat forms of arthritis and rheumatic conditions.


The influence of BSA on the micellisation and gelation behaviour of Poloxamer 407, chosen as a model copolymer, was studied by differential scanning calorimetry (microDSC), dynamic light scattering (DLS), fluorescence spectroscopy and rheology studies. A release study of MTX loaded inside the hydrogel in presence and in absence of BSA was performed.


DLS and microDSC data revealed that the micellisation process was not affected by the protein, as demonstrated by unaltered micellar size and thermodynamic parameters. While the presence of BSA in the copolymer system reduced gel consistency, the hydrogel release performance was only slightly affected.


Our results suggested that the kinetics of MTX release mainly depended on the presence of the thermogelling copolymer, although other mechanisms related to BSA could be involved. Finally, the study assessed the feasibility of using a thermogelling hydrogel for in situ drug administration in areas with the presence of high protein concentrations.


BSA methotrexate poloxamer 407 polymer-protein interaction sustained release 

Supplementary material

11095_2014_1521_MOESM1_ESM.doc (34 kb)
Table ST1 (DOC 34 kb)
11095_2014_1521_MOESM2_ESM.doc (28 kb)
Table ST2 (DOC 27 kb)
11095_2014_1521_MOESM3_ESM.doc (29 kb)
Table ST3 (DOC 29 kb)
11095_2014_1521_Fig8_ESM.jpg (625 kb)
Figure SF 1

Effect of the increasing concentration of P407 on the intrinsic fluorescence emission of BSA at 35°C. (JPEG 625 kb)

11095_2014_1521_Fig9_ESM.jpg (662 kb)
Figure SF 2

Effect of the increasing concentration of P407 on the intrinsic fluorescence emission of BSA at 10°C. (JPEG 662 kb)


  1. 1.
    Mizushima Y, Miyake H, Fujiwara K, Ono N, Takikawa K. A highly topically active corticosteroid. Preliminary report. Arzneim Forsch/Drug Res. 1980;30(2):274–5.Google Scholar
  2. 2.
    Hoshi K. Clinical application of DDS, steroid therapy and NSAIDs. Nippon Rinsho Jpn J Clin Med. 1989;47(6):1302–7.Google Scholar
  3. 3.
    Evans CH, Kraus VB, Setton LA. Progress in intra-articular therapy. Nat Rev Rheumatol. 2014;10(1):11–22.CrossRefPubMedGoogle Scholar
  4. 4.
    Miao B, Song C, Ma G. Injectable thermosensitive hydrogels for intra-articular delivery of methotrexate. J Appl Polym Sci. 2011;122(3):2139–45.CrossRefGoogle Scholar
  5. 5.
    Horisawa E, Hirota T, Kawazoe S, Yamada J, Yamamoto H, Takeuchi H, et al. Prolonged anti-inflammatory action of DL-lactide/glycolide copolymer nanospheres containing betamethasone sodium phosphate for an intra-articular delivery system in antigen-induced arthritic rabbit. Pharm Res. 2002;19(4):403–10.CrossRefPubMedGoogle Scholar
  6. 6.
    Huang G, Zhang Z. Micro- and nano-carrier mediated intra-articular drug delivery systems for the treatment of osteoarthritis. J Nanotechnol. 2012.Google Scholar
  7. 7.
    Jeong B, Kim SW, Bae YH. Thermosensitive sol–gel reversible hydrogels. Adv Drug Deliv Rev. 2002;54(1):37–51.CrossRefPubMedGoogle Scholar
  8. 8.
    Ruel-Gariépy E, Leroux J-C. In situ-forming hydrogels—review of temperature-sensitive systems. Eur J Pharm Biopharm. 2004;58(2):409–26.CrossRefPubMedGoogle Scholar
  9. 9.
    Freeman ME, Furey MJ, Love BJ, Hampton JM. Friction, wear, and lubrication of hydrogels as synthetic articular cartilage. Wear. 2000;241(2):129–35.CrossRefGoogle Scholar
  10. 10.
    Bonacucina G, Cespi M, Mencarelli G, Giorgioni G, Palmieri GF. Thermosensitive self-assembling block copolymers as drug delivery systems. Polymers. 2011;3(2):779–811.CrossRefGoogle Scholar
  11. 11.
    Alexandridis P, Alan Hatton T. Poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) block copolymer surfactants in aqueous solutions and at interfaces: thermodynamics, structure, dynamics, and modeling. Colloids Surf A Physicochem Eng Asp. 1995;96(1–2):1–46.CrossRefGoogle Scholar
  12. 12.
    Perinelli DR, Cespi M, Pucciarelli S, Casettari L, Palmieri GF, Bonacucina G. Effect of phosphate buffer on the micellisation process of Poloxamer 407: microcalorimetry, acoustic spectroscopy and dynamic light scattering (DLS) studies. Colloids Surf A Physicochem Eng Asp. 2013;436:123–9.CrossRefGoogle Scholar
  13. 13.
    Levick JR. Microvascular architecture and exchange in synovial joints. Microcirculation (New York, NY : 1994). 1995;2(3):217–33.CrossRefGoogle Scholar
  14. 14.
    Wunder A, Müller-Ladner U, Stelzer EHK, Funk J, Neumann E, Stehle G, et al. Albumin-based drug delivery as novel therapeutic approach for rheumatoid arthritis. J Immunol. 2003;170(9):4793–801.CrossRefPubMedGoogle Scholar
  15. 15.
    Kratz F. Albumin as a drug carrier: design of prodrugs, drug conjugates and nanoparticles. J Control Release. 2008;132(3):171–83.CrossRefPubMedGoogle Scholar
  16. 16.
    Sterner B, Harms M, Weigandt M, Windbergs M, Lehr CM. Crystal suspensions of poorly soluble peptides for intra-articular application: a novel approach for biorelevant assessment of their in vitro release. Int J Pharm. 2014;461(1–2):46–53.CrossRefPubMedGoogle Scholar
  17. 17.
    Li W, Wang H, Yang Y. Protein-modulated release behavior of a hydrophilic/lipophilic dual-drug from supramolecularly gelled microemulsions. RSC Adv. 2014;4(5):2109–14. doi: 10.1039/C3RA45868G.CrossRefGoogle Scholar
  18. 18.
    BASF. Poloxamer 407-Thickening agent and gel former for the pharmaceutical industry. 2005.Google Scholar
  19. 19.
    Lakowicz JR. Quenching of fluorescence. Principles of fluorescence spectroscopy. 3th ed: Springer; 2007.Google Scholar
  20. 20.
    Lewis GA, Mathieu D, Phan-Tau-Luu R, editors. Pharmaceutical experimental design. Marcel Dekker, Inc.Google Scholar
  21. 21.
    Liebenberg W, Engelbrecht E, Wessels A, Devarakonda B, Yang W, De Villiers MM. A comparative study of the release of active ingredients from semisolid cosmeceuticals measured with Franz, enhancer or flow-through cell diffusion apparatus. J Food Drug Anal. 2004;12(1):19–28.Google Scholar
  22. 22.
    Olejnik A, Goscianska J, Nowak I. Active compounds release from semisolid dosage forms. J Pharm Sci. 2012;101(11):4032–45.CrossRefPubMedGoogle Scholar
  23. 23.
    Ueda CT, Shah VP, Derdzinski K, Ewing G, Flynn G, Maibach H, et al. Topical and transdermal drug products. Pharmacopeial Forum. 2009;35(3):750–64.Google Scholar
  24. 24.
    Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72(1–2):248–54.CrossRefPubMedGoogle Scholar
  25. 25.
    Bonacucina G, Spina M, Misici-Falzi M, Cespi M, Pucciarelli S, Angeletti M, et al. Effect of hydroxypropyl β-cyclodextrin on the self-assembling and thermogelation properties of Poloxamer 407. Eur J Pharm Sci. 2007;32(2):115–22.CrossRefPubMedGoogle Scholar
  26. 26.
    Giancola C, De Sena C, Fessas D, Graziano G, Barone G. DSC studies on bovine serum albumin denaturation effects of ionic strength and SDS concentration. Int J Biol Macromol. 1997;20(3):193–204.CrossRefPubMedGoogle Scholar
  27. 27.
    Zhang Y-Z, Zhou B, Liu Y-X, Zhou C-X, Ding X-L, Liu Y. Fluorescence study on the interaction of bovine serum albumin with P-aminoazobenzene. J Fluoresc. 2008;18(1):109–18.CrossRefPubMedGoogle Scholar
  28. 28.
    Sułkowska A, Maciążek M, Równicka J, Bojko B, Pentak D, Sułkowski WW. Effect of temperature on the methotrexate – BSA interaction: spectroscopic study. J Mol Struct. 2007;834–836:162–9.CrossRefGoogle Scholar
  29. 29.
    Chang EI, Galvez MG, Glotzbach JP, Hamou CD, El-ftesi S, Rappleye CT, et al. Vascular anastomosis using controlled phase transitions in poloxamer gels. Nat Med. 2011;17(9):1147–52. doi: 10.1038/nm.2424.CrossRefPubMedGoogle Scholar
  30. 30.
    Cespi M, Bonacucina G, Casettari L, Mencarelli G, Palmieri G. Poloxamer thermogel systems as medium for crystallization. Pharm Res. 2012;29(3):818–26.CrossRefPubMedGoogle Scholar
  31. 31.
    Moore T, Croy S, Mallapragada S, Pandit N. Experimental investigation and mathematical modeling of Pluronic® F127 gel dissolution: drug release in stirred systems. J Control Release. 2000;67(2–3):191–202.CrossRefPubMedGoogle Scholar
  32. 32.
    Anderson BC, Pandit NK, Mallapragada SK. Understanding drug release from poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) gels. J Control Release. 2001;70(1–2):157–67.CrossRefPubMedGoogle Scholar
  33. 33.
    Kim E-Y, Gao Z-G, Park J-S, Li H, Han K. rhEGF/HP-β-CD complex in poloxamer gel for ophthalmic delivery. Int J Pharm. 2002;233(1–2):159–67.CrossRefPubMedGoogle Scholar
  34. 34.
    Katakam M, Ravis WR, Banga AK. Controlled release of human growth hormone in rats following parenteral administration of poloxamer gels. J Control Release. 1997;49(1):21–6.CrossRefGoogle Scholar
  35. 35.
    Pucciarelli S, Bonacucina G, Bernabucci F, Cespi M, Mencarelli G, Fronzo G, et al. A study on the stability and enzymatic activity of yeast alcohol dehydrogenase in presence of the self-assembling block copolymer poloxamer 407. Appl Biochem Biotechnol. 2012;167(2):298–313.CrossRefPubMedGoogle Scholar
  36. 36.
    Tayeh N, Rungassamy T, Albani JR. Fluorescence spectral resolution of tryptophan residues in bovine and human serum albumins. J Pharm Biomed Anal. 2009;50(2):107–16.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Diego R. Perinelli
    • 1
  • Giulia Bonacucina
    • 1
  • Stefania Pucciarelli
    • 2
  • Marco Cespi
    • 1
  • Luca Casettari
    • 3
  • Valeria Polzonetti
    • 2
  • Francesco Martino Carpi
    • 2
  • Giovanni F. Palmieri
    • 1
  1. 1.School of PharmacyUniversity of CamerinoCamerinoItaly
  2. 2.School of Biosciences and BiotechnologyUniversity of CamerinoCamerinoItaly
  3. 3.Department of Biomolecular SciencesUniversity of UrbinoUrbinoItaly

Personalised recommendations