Skip to main content

Advertisement

Log in

Simultaneous Formation and Micronization of Pharmaceutical Cocrystals by Rapid Expansion of Supercritical Solutions (RESS)

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

We investigated the RESS process as a means of simultaneous micronization and cocrystallization of a model drug with poor aqueous solubility.

Methods

1:1 cocrystals of ibuprofen (IBU) and nicotinamide (NA) were produced with a pilot scale unit for RESS processing.IBU and NA were dissolved in scCO2 at 30 MPa and 50°C. After 24 h, the supercritical solution was expanded at a medium CO2 flow rate of 3.8 kg/h during 60 min into an expansion vessel kept at ambient conditions. Cocrystals were identified with DSC, XRD and confocal Raman microscopy (CRM) and further characterized by SEM, specific surface area, wetting ability, solubility and dissolution testing.

Results

Judging by DSC, XRD and CRM, cocrystals with high purity could be produced with the RESS technique. Micronization via RESS was successful, since the specific surface area of RESS cocrystals was increased almost tenfold in comparison to cocrystals produced by slow solvent evaporation. Due to the additional micronization, the mean dissolution time of IBU from RESS cocrystals was decreased.

Conclusions

RESS cocrystallization offers the advantage of combining micronization and cocrystallization in a single production step. For drugs with dissolution-limited bioavailability, RESS cocrystallization may therefore be a superior approach in comparison to established cocrystallization techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

IBU:

Ibuprofen

NA:

Nicotinamide

RCC 0.5:1:

RESS coprecipitates with a molar ratio of 0.5:1 (IBU:NA)

RCC 1:1:

RESS coprecipitates with a molar ratio of 1:1 (IBU:NA)

SCC 1:1:

Cocrystals produced by slow solvent evaporation

ScCO2 :

Supercritical carbon dioxide

References

  1. Elder DP, Holm R, Diego HL. Use of pharmaceutical salts and cocrystals to address the issue of poor solubility. Int J Pharm. 2013;453(1):88–100.

    Article  CAS  PubMed  Google Scholar 

  2. U.S. Food and Drug Administration 2013. U.S. Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research. Guidance for Industry: Regulatory Classification of Pharmaceutical Cocrystals.

  3. Ainouz A, Authelin J-R, Billot P, Lieberman H. Modeling and prediction of cocrystal phase diagrams. Int J Pharm. 2009;374(1–2):82–9.

    Article  CAS  PubMed  Google Scholar 

  4. Chow SF, Chen M, Shi L, Chow AHL, Sun CC. Simultaneously improving the mechanical properties, dissolution performance, and hygroscopicity of ibuprofen and flurbiprofen by cocrystallization with nicotinamide. Pharm Res. 2012;29(7):1854–65.

    Article  CAS  PubMed  Google Scholar 

  5. Debenedetti PG, Tom JW, Kwauk X, Yeo SD. Rapid expansion of supercritical solutions (RESS): fundamentals and applications. Fluid Phase Equilib. 1993;82:311–21.

    Article  CAS  Google Scholar 

  6. Hirunsit P, Huang Z, Srinophakun T, Charoenchaitrakool M, Kawi S. Particle formation of ibuprofen-supercritical CO2 system from rapid expansion of supercritical solutions (RESS): a mathematical model. Powder Technol. 2005;154(2–3):83–94.

    Article  CAS  Google Scholar 

  7. Türk M. Formation of small organic particles by RESS: experimental and theoretical investigations. J Supercrit Fluids. 1999;15(1):79–89.

    Article  Google Scholar 

  8. Türk M, Hils P, Helfgen B, Schaber K, Martin HJ, Wahl MA. Micronization of pharmaceutical substances by the Rapid Expansion of Supercritical Solutions (RESS): a promising method to improve bioavailability of poorly soluble pharmaceutical agents. J Supercrit Fluids. 2002;22(1):75–84.

    Article  Google Scholar 

  9. Ginty PJ, Whitaker MJ, Shakesheff KM, Howdle SM. Drug delivery goes supercritical. Mater Today. 2005;8(8):42–8.

    Article  Google Scholar 

  10. Vemavarapu C, Mollan MJ, Lodaya M, Needham TE. Design and process aspects of laboratory scale SCF particle formation systems. Int J Pharm. 2005;292(1):1–16.

    Article  CAS  PubMed  Google Scholar 

  11. Constable DJC, Jimenez-Gonzalez C, Henderson RK. Perspective on solvent use in the pharmaceutical industry. Org Process Res Dev. 2006;11(1):133–7.

    Article  Google Scholar 

  12. Pasquali I, Bettini R, Giordano F. Solid-state chemistry and particle engineering with supercritical fluids in pharmaceutics. Eur J Pharm Sci. 2006;27(4):299–310.

    Article  CAS  PubMed  Google Scholar 

  13. Pasquali I, Bettini R. Are pharmaceutics really going supercritical? Int J Pharm. 2008;364(2):176–87.

    Article  CAS  PubMed  Google Scholar 

  14. Jung J, Perrut M. Particle design using supercritical fluids: literature and patent survey. J Supercrit Fluids. 2001;20(3):179–219.

    Article  CAS  Google Scholar 

  15. Wahl MA. Supercritical fluid technology. In: Parikh DM, editor. Handbook of pharmaceutical granulation technology. New York: Informa Healthcare; 2009. p. 126–37.

    Google Scholar 

  16. Hezave AZ, Esmaeilzadeh F. Micronization of drug particles via RESS process. J Supercrit Fluids. 2010;52(1):84–98.

    Article  CAS  Google Scholar 

  17. Kayrak D, Akman U, Hortaçsu Ö. Micronization of ibuprofen by RESS. J Supercrit Fluids. 2003;26(1):17–31.

    Article  CAS  Google Scholar 

  18. Vemavarapu C, Mollan MJ, Needham TE. Coprecipitation of pharmaceutical actives and their structurally related additives by the RESS process. Powder Technol. 2009;189(3):444–53.

    Article  CAS  Google Scholar 

  19. Johannsen M, Brunner G. Measurements of solubilities of xanthines in supercritical carbon dioxide + methanol. J Chem Eng Data. 1995;40(2):431–4.

    Article  CAS  Google Scholar 

  20. Padrela L, Rodrigues MA, Velaga SP, Matos HA, de Azevedo EG. Formation of indomethacin-saccharin cocrystals using supercritical fluid technology. Eur J Pharm Sci. 2009;38(1):9–17.

    Article  CAS  PubMed  Google Scholar 

  21. Charoenchaitrakool M, Dehghani F, Foster NR, Chan HK. Micronization by rapid expansion of supercritical solutions to enhance the dissolution rates of poorly water-soluble pharmaceuticals. Ind Eng Chem Res. 2000;39(12):4794–802.

    Article  CAS  Google Scholar 

  22. Oberoi LM, Alexander KS, Riga AT. Study of interaction between ibuprofen and nicotinamide using differential scanning calorimetry, spectroscopy, and microscopy and formulation of a fast-acting and possibly better ibuprofen suspension for osteoarthritis patients. J Pharm Sci. 2004;94(1):93–101.

    Article  Google Scholar 

  23. Berry DJ, Seaton CC, Clegg W, Harrington RW, Coles SJ, Horton PN, et al. Applying hot-stage microscopy to co-crystal screening: a study of nicotinamide with seven active pharmaceutical ingredients. Cryst Growth Des. 2008;8(5):1697–712.

    Article  CAS  Google Scholar 

  24. Dhumal RS, Kelly AL, York P, Coates PD, Paradkar A. Cocrystalization and simultaneous agglomeration using hot melt extrusion. Pharm Res. 2010;27(12):2725–33.

    Article  CAS  PubMed  Google Scholar 

  25. Kelly AL, Gough T, Dhumal RS, Halsey SA, Paradkar A. Monitoring ibuprofen-nicotinamide cocrystal formation during solvent free continuous cocrystallization (SFCC) using near infrared spectroscopy as a PAT tool. Int J Pharm. 2012;426(1–2):15–20.

    Article  CAS  PubMed  Google Scholar 

  26. Kotnik P, Škerget M, Knez Ž. Solubility of nicotinic acid and nicotinamide in carbon dioxide at T = (313.15 to 373.15) K and p = (5 to 30) MPa: experimental data and correlation. J Chem Eng Data. 2011;56(2):338–43.

    Article  CAS  Google Scholar 

  27. Sheridan PL, Buckton G, Storey DE. The extent of errors associated with contact angles II. factors affecting data obtained using a Wilhelmy plate technique for powders. Int J Pharm. 1994;109(2):155–71.

    Article  CAS  Google Scholar 

  28. Grossjohann C, Eccles KS, Maguire AR, Lawrence SE, Tajber L, Corrigan OI, et al. Characterisation, solubility and intrinsic dissolution behaviour of benzamide: dibenzyl sulfoxide cocrystal. Int J Pharm. 2012;422(1–2):24–32.

    Article  CAS  PubMed  Google Scholar 

  29. Akalin E, Akyuz S. Vibrational analysis of free and hydrogen bonded complexes of nicotinamide and picolinamide. Vib Spectrosc. 2006;42(2):333–40.

    Article  CAS  Google Scholar 

  30. Rossi B, Verrocchio P, Viliani G, Mancini I, Guella G, Rigo E, et al. Vibrational properties of ibuprofen–cyclodextrin inclusion complexes investigated by Raman scattering and numerical simulation. J Raman Spectrosc. 2009;40(4):453–8.

    Article  CAS  Google Scholar 

  31. Jubert A, Legarto ML, Massa NE, Tévez LL, Okulik NB. Vibrational and theoretical studies of non-steroidal anti-inflammatory drugs Ibuprofen [2-(4-isobutylphenyl)propionic acid]; Naproxen [6-methoxy-α ± −methyl-2-naphthalene acetic acid] and Tolmetin acids [1-methyl-5-(4-methylbenzoyl)-1H-pyrrole-2-acetic acid]. J Mol Struct. 2006;783(1–3):34–51.

    Article  CAS  Google Scholar 

  32. Truelove J, Bawarshi-Nassar R, Chen NR, Hussain A. Solubility enhancement of some developmental anti-cancer nucleoside analogs by complexation with nicotinamide. Int J Pharm. 1984;19(1):17–25.

    Article  CAS  Google Scholar 

  33. Sanghvi R, Evans D, Yalkowsky SH. Stacking complexation by nicotinamide: a useful way of enhancing drug solubility. Int J Pharm. 2007;336(1):35–41.

    Article  CAS  PubMed  Google Scholar 

  34. Matson DW, Fulton JL, Petersen RC, Smith RD. Rapid expansion of supercritical fluid solutions: solute formation of powders, thin films, and fibers. Ind Eng Chem Res. 1987;26(11):2298–306.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

A part of this work has been presented as a poster at the AAPS Annual Meeting in San Antonio, US, Nov. 10–14, 2013 and at the 9th PBP world meeting in Lisbon, Portugal, March 31—April 3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin A. Wahl.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Müllers, K.C., Paisana, M. & Wahl, M.A. Simultaneous Formation and Micronization of Pharmaceutical Cocrystals by Rapid Expansion of Supercritical Solutions (RESS). Pharm Res 32, 702–713 (2015). https://doi.org/10.1007/s11095-014-1498-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-014-1498-9

KEY WORDS

Navigation