Skip to main content
Log in

Applicability of a Newly Developed Bioassay for Determining Bioactivity of Anti-Inflammatory Compounds in Release Studies − Celecoxib and Triamcinolone Acetonide Released from Novel PLGA-Based Microspheres

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

: To develop a bio-assay for measuring long-term bioactivity of released anti-inflammatory compounds and to test the bioactivity of celecoxib (CXB) and triamcinolone acetonide (TA) released from a new PLGA-based microsphere platform.

Methods

: Human osteoarthritic chondrocytes were plated according to standardized procedures after batch-wise harvest and cultured for 3 days to prevent cell confluency and changes in cell behaviour. Prostaglandin E2 (PGE2) production stimulated by TNFα was used as a parameter of inflammation. A novel microsphere platform based on PTE-functionalised PLGA was used to incorporate CXB and TA. Loaded microspheres were added to transwells overlying the cells, with transfer of the wells to new cell cultures every 3 days. Inhibition of PGE2 production was determined over a period of 21 days.

Results

: PLGA(75:25)-PTE microspheres were prepared and loaded with CXB and TA at 86 and 97% loading efficiency, respectively. In the bioactivity assay, PGE2 levels induced by TNFα were reduced to an average of 30% using microspheres loaded with 0.1 nmol CXB per transwell; with microspheres loaded with 0.1 nmol TA, PGE2 production was initially reduced to 3% and gradually recovered to 30% reduction. At 1 nmol loading, PGE2 was inhibited to 0–7% for CXB-loaded microspheres, and 0–28% for TA-loaded microspheres.

Conclusions

: We present a novel sustained release bioactivity assay which provides an essential link between in vitro buffer-based release kinetics and in vivo application. Novel PLGA-based microspheres loaded with TA and CXB showed efficient anti-inflammatory effects over time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CXB:

Celecoxib

Mn:

Number-average molecular weight

Mw:

Weight-average molecular weight

OA:

Osteoarthritis

PBS:

Phosphate buffered saline

PDI:

Polydispersity index

PGE2 :

Prostaglandin E2

PLGA-PTE:

Poly(lactic-co-glycolic acid) with poly(thioester) linkages

TA:

Triamcinolone acetonide

TNFα:

Tumor necrosis factor alpha

Reference

  1. The burden of musculoskeletal diseases at the start of the new millennium. World Health Organization. 2003; Technical Report Series no 919.

  2. Lawrence RC, Felson DT, Helmick CG, Arnold LM, Choi H, Deyo RA, et al. Estimates of the prevalence of arthritis and other rheumatic conditions in the United States. Part II. Arthritis Rheum. 2008;58(1):26–35.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Urban JP, Roberts S. Degeneration of the intervertebral disc. Arthritis Res Ther. 2003;5(3):120–30.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Deyo RA, Mirza SK, Martin BI. Back pain prevalence and visit rates: estimates from U.S. national surveys, 2002. Spine (Phila Pa 1976). 2006;31(23):2724–7.

    Article  Google Scholar 

  5. Clark AG, Jordan JM, Vilim V, Renner JB, Dragomir AD, Luta G, et al. Serum cartilage oligomeric matrix protein reflects osteoarthritis presence and severity: the johnston county osteoarthritis project. Arthritis Rheum. 1999;42(11):2356–64.

    Article  CAS  PubMed  Google Scholar 

  6. Podichetty VK. The aging spine: the role of inflammatory mediators in intervertebral disc degeneration. Cell Mol Biol. 2007;53(5):4–18.

    CAS  PubMed  Google Scholar 

  7. Recommendations for the medical management of osteoarthritis of the hip and knee: 2000 update. American college of rheumatology subcommittee on osteoarthritis guidelines. Arthritis Rheum. 2000;43(9):1905–15.

    Article  Google Scholar 

  8. Roberts S, Butler RC. Inflammatory mediators as potential therapeutic targets in the spine. Curr Drug Targets Inflamm Allergy. 2005;4(2):257–66.

    Article  CAS  PubMed  Google Scholar 

  9. Solomon SD, Pfeffer MA, McMurray JJ, Fowler R, Finn P, Levin B, et al. Effect of celecoxib on cardiovascular events and blood pressure in two trials for the prevention of colorectal adenomas. Circulation. 2006;114(10):1028–35.

    Article  CAS  PubMed  Google Scholar 

  10. Saag KG, Koehnke R, Caldwell JR, Brasington R, Burmeister LF, Zimmerman B, et al. Low dose long-term corticosteroid therapy in rheumatoid arthritis: an analysis of serious adverse events. Am J Med. 1994;96(2):115–23.

    Article  CAS  PubMed  Google Scholar 

  11. Donihi AC, Raval D, Saul M, Korytkowski MT, DeVita MA. Prevalence and predictors of corticosteroid-related hyperglycemia in hospitalized patients. Endocr Pract. 2006;12(4):358–62.

    Article  PubMed  Google Scholar 

  12. Gaffney K, Ledingham J, Perry JD. Intra-articular triamcinolone hexacetonide in knee osteoarthritis: factors influencing the clinical response. Ann Rheum Dis. 1995;54(5):379–81.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Heyneman CA, Lawless-Liday C, Wall GC. Oral versus topical NSAIDs in rheumatic diseases: a comparison. Drugs. 2000;60(3):555–74.

    Article  CAS  PubMed  Google Scholar 

  14. Pyne D, Ioannou Y, Mootoo R, Bhanji A. Intra-articular steroids in knee osteoarthritis: a comparative study of triamcinolone hexacetonide and methylprednisolone acetate. Clin Rheumatol. 2004;23(2):116–20.

    Article  PubMed  Google Scholar 

  15. Cao P, Jiang L, Zhuang C, Yang Y, Zhang Z, Chen W, et al. Intradiscal injection therapy for degenerative chronic discogenic low back pain with end plate modic changes. Spine J. 2011;11(2):100–6.

    Article  PubMed  Google Scholar 

  16. Lopez-Garcia F, Vazquez-Auton JM, Gil F, Latoore R, Moreno F, Villalain J, et al. Intra-articular therapy of experimental arthritis with a derivative of triamcinolone acetonide incorporated in liposomes. J Pharm Pharmacol. 1993;45(6):576–8.

    Article  CAS  PubMed  Google Scholar 

  17. Thakkar H, Sharma RK, Mishra AK, Chuttani K, Murthy RS. Celecoxib incorporated chitosan microspheres: in vitro and in vivo evaluation. J Drug Target. 2004;12(9–10):549–57.

    Article  CAS  PubMed  Google Scholar 

  18. de Silva M, Hazleman BL, Thomas DP, Wraight P. Liposomes in arthritis: a new approach. Lancet. 1979;1(8130):1320–2.

    Article  PubMed  Google Scholar 

  19. Rowland M. Plasma protein binding and therapeutic drug monitoring. Ther Drug Monit. 1980;2(1):29–37.

    Article  CAS  PubMed  Google Scholar 

  20. Hoyle CE, Lee TY, Roper T. Thiol–enes: chemistry of the past with promise for the future. J Polym Sci Part A: Pol Chem. 2004;42(21):5301–38.

    Article  CAS  Google Scholar 

  21. van Dijk M, Rijkers DTS, Liskamp RMJ, van Nostrum CF, Hennink WE. Synthesis and applications of biomedical and pharmaceutical polymers via click chemistry methodologies. Bioconjug Chem. 2009;20(11):2001–16.

    Article  PubMed  Google Scholar 

  22. Dias A, Boerakker M, Nijenhuis A. Polymers comprising thioester bonds. 2007:WO/2007/028612.

  23. Sinha VR, Trehan A. Biodegradable microspheres for protein delivery. J Control Release. 2003;90(3):261–80.

    Article  CAS  PubMed  Google Scholar 

  24. Baboota S, Faiyaz S, Ahuja A, Ali J, Shafiq S, Ahmad S. Development and validation of a stability-indicating HPLC method for analysis of Celecoxib (CXB) in bulk drug and microemulsion formulations. Acta Chromatogr. 2007;18:116–29.

    CAS  Google Scholar 

  25. Ahn JS, Choi HK, Chun MK, Ryu JM, Jung JH, Kim YU, et al. Release of triamcinolone acetonide from mucoadhesive polymer composed of chitosan and poly(acrylic acid) in vitro. Biomaterials. 2002;23(6):1411–6.

    Article  CAS  PubMed  Google Scholar 

  26. Goldie I, Nachemson A. Synovial pH in rheumatoid knee-joints. I. eff synovectomy Acta Orthop Scand. 1969;40(5):634–41.

    Article  CAS  Google Scholar 

  27. Nachemson A. Intradiscal measurements of pH in patients with lumbar rhizopathies. Acta Orthop Scand. 1969;40(1):23–42.

    Article  CAS  PubMed  Google Scholar 

  28. Chandran S, Ravi P, Saha RN. Development and in vitro evaluation of oral controlled release formulations of celecoxib using optimization techniques. Yakugaku zasshi: J e Pharm Soc Jpn. 2006;126(7):505–14.

    Article  CAS  Google Scholar 

  29. Center for Drug Evaluation and Research. Approval package for: application number ANDA 090164 “ Triamcinolone Acetonide Injectable Suspension USP 40 mg/mL”. FDA. 2009.

  30. van Diest PJ. No consent should be needed for using leftover body material for scientific purposes. For Bmj. 2002;325(7365):648–51.

    Article  Google Scholar 

  31. Danhier F, Ansorena E, Silva JM, Coco R, Le Breton A, Preat V. PLGA-based nanoparticles: an overview of biomedical applications. J Control Release. 2012;161(2):505–22.

    Article  CAS  PubMed  Google Scholar 

  32. DrugBank database. Celecoxib (DB00482). http://www.drugbank.ca/.

  33. Royal Society of Chemistry. Tiamcinolone acetonide. http://www.rsc.org/learn-chemistry.

  34. Fredenberg S, Wahlgren M, Reslow M, Axelsson A. The mechanisms of drug release in poly(lactic-co-glycolic acid)-based drug delivery systems–a review. Int J Pharm. 2011;415(1–2):34–52.

    Article  CAS  PubMed  Google Scholar 

  35. Faisant N, Akiki J, Siepmann F, Benoit JP, Siepmann J. Effects of the type of release medium on drug release from PLGA-based microparticles: experiment and theory. Int J Pharm. 2006;314(2):189–97.

    Article  CAS  PubMed  Google Scholar 

  36. Seedher N, Bhatia S. Mechanism of interaction of the non-steroidal antiinflammatory drugs meloxicam and nimesulide with serum albumin. J Pharm Biomed Anal. 2005;39(1–2):257–62.

    Article  CAS  PubMed  Google Scholar 

  37. Kempen DH, Lu L, Hefferan TE, Creemers LB, Maran A, Classic KL, et al. Retention of in vitro and in vivo BMP-2 bioactivities in sustained delivery vehicles for bone tissue engineering. Biomaterials. 2008;29(22):3245–52.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Lu L, Garcia CA, Mikos AG. In vitro degradation of thin poly(DL-lactic-co-glycolic acid) films. J Biomed Mater Res. 1999;46(2):236–44.

    Article  CAS  PubMed  Google Scholar 

  39. Witschi C, Doelker E. Influence of the microencapsulation method and peptide loading on poly(lactic acid) and poly(lactic-co-glycolic acid) degradation during in vitro testing. J Control Release. 1998;51(2–3):327–41.

    Article  CAS  PubMed  Google Scholar 

  40. Jain RA. The manufacturing techniques of various drug loaded biodegradable poly(lactide-co-glycolide) (PLGA) devices. Biomaterials. 2000;21(23):2475–90.

    Article  CAS  PubMed  Google Scholar 

  41. Cui F, Cun D, Tao A, Yang M, Shi K, Zhao M, et al. Preparation and characterization of melittin-loaded poly (DL-lactic acid) or poly (DL-lactic-co-glycolic acid) microspheres made by the double emulsion method. J Control Release. 2005;107(2):310–9.

    Article  CAS  PubMed  Google Scholar 

  42. Hazekawa M, Sakai Y, Yoshida M, Haraguchi T, Uchida T. Single injection of ONO-1301-loaded PLGA microspheres directly after ischaemia reduces ischaemic damage in rats subjected to middle cerebral artery occlusion. J Pharm Pharmacol. 2012;64(3):353–9.

    Article  CAS  PubMed  Google Scholar 

  43. Cheng S, Afif H, Martel-Pelletier J, Pelletier JP, Li X, Farrajota K, et al. Activation of peroxisome proliferator-activated receptor gamma inhibits interleukin-1beta-induced membrane-associated prostaglandin E2 synthase-1 expression in human synovial fibroblasts by interfering with Egr-1. J Biol Chem. 2004;279(21):22057–65.

    Article  CAS  PubMed  Google Scholar 

  44. Kirtikara K, Morham SG, Raghow R, Laulederkind SJ, Kanekura T, Goorha S, et al. Compensatory prostaglandin E2 biosynthesis in cyclooxygenase 1 or 2 null cells. J Exp Med. 1998;187(4):517–23.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Moore RA, Derry S, Makinson GT, McQuay HJ. Tolerability and adverse events in clinical trials of celecoxib in osteoarthritis and rheumatoid arthritis: systematic review and meta-analysis of information from company clinical trial reports. Arthritis Res Ther. 2005;7(3):R644–665.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Hollander J, Brown EMJ, Jessar RA, Brown CY. Hydrocortisone and cortisone injected into arthritic joints: Comparative effects of and use of hydrocortisone as a local antiarthritic agent. J Am Med Assoc. 1951;147(17):1629.

    Article  CAS  PubMed  Google Scholar 

  47. Hollander JL, Jessar RA, Brown EMJ. Intra-synovial corticosteroid therapy: a decade of use. Bull Rheum Dis. 1961;11:239–40.

    CAS  PubMed  Google Scholar 

  48. Dieppe PA, Sathapatayavongs B, Jones HE, Bacon PA, Ring EF. Intra-articular steroids in osteoarthritis. Rheum Rehabil. 1980;19(4):212–7.

    Article  CAS  Google Scholar 

  49. Raynauld JP, Buckland-Wright C, Ward R, Choquette D, Haraoui B, Martel-Pelletier J, et al. Safety and efficacy of long-term intraarticular steroid injections in osteoarthritis of the knee: a randomized, double-blind, placebo-controlled trial. Arthritis Rheum. 2003;48(2):370–7.

    Article  CAS  PubMed  Google Scholar 

  50. Jean YH, Wen ZH, Chang YC, Hsieh SP, Tang CC, Wang YH, et al. Intra-articular injection of the cyclooxygenase-2 inhibitor parecoxib attenuates osteoarthritis progression in anterior cruciate ligament-transected knee in rats: role of excitatory amino acids. Osteoarthr Cartil. 2007;15(6):638–45.

    Article  PubMed  Google Scholar 

  51. Lee JW, Choi SW, Park SH, Lee GY, Kang HS. MR-based outcome predictors of lumbar transforaminal epidural steroid injection for lumbar radiculopathy caused by herniated intervertebral disc. Eur Radiol. 2013;23(1):205–11.

    Article  PubMed  Google Scholar 

  52. Papavasiliou AV, Isaac DL, Marimuthu R, Skyrme A, Armitage A. Infection in knee replacements after previous injection of intra-articular steroid. J Bone Joint Surg (Br). 2006;88(3):321–3.

    Article  CAS  Google Scholar 

  53. Kaspar S. de VdBJ. Infection in hip arthroplasty after previous injection of steroid. J Bone Joint Surg (Br). 2005;87(4):454–7.

    Article  CAS  Google Scholar 

  54. Wischke C, Schwendeman SP. Principles of encapsulating hydrophobic drugs in PLA/PLGA microparticles. Int J Pharm. 2008;364(2):298–327.

    Article  CAS  PubMed  Google Scholar 

  55. Laeschke K. Biocompatibility of microparticles into soft tissue fillers. Semin cutaneous med surg. 2004;23(4):214–7.

    Article  Google Scholar 

Download references

Acknowledgments AND DISCLOSURES

This research forms part of the Project P2.01 IDiDAS of the research program of the BioMedical Materials institute, co-funded by the Dutch Ministry of Economic Affairs. The financial contribution of the Dutch Arthritis Association is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura B. Creemers.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Hy., van Dijk, M., Licht, R. et al. Applicability of a Newly Developed Bioassay for Determining Bioactivity of Anti-Inflammatory Compounds in Release Studies − Celecoxib and Triamcinolone Acetonide Released from Novel PLGA-Based Microspheres . Pharm Res 32, 680–690 (2015). https://doi.org/10.1007/s11095-014-1495-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-014-1495-z

Key Words

Navigation