Skip to main content

Advertisement

Log in

Folate-Targeted Multifunctional Amino Acid-Chitosan Nanoparticles for Improved Cancer Therapy

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Tumor targeting nanomaterials have potential for improving the efficiency of anti-tumoral therapeutics. However, the evaluation of their biological performance remains highly challenging. In this study we describe the synthesis of multifunctional nanoparticles decorated with folic acid-PEG and dual amino acid-modified chitosan (CM-PFA) complexed with DNA and their evaluation in organotypic 2D co-cultures of cancer-normal cells and also on 3D multicellular tumor spheroids models.

Methods

The physicochemical characterization of CM-PFA multifunctional carriers was performed by FTIR, 1H NMR and DLS. 2D co-culture models were established by using a 1:2 cancer-to-normal cell ratio. 3D organotypic tumor spheroids were assembled using micromolding technology for high throughput screening. Nanoparticle efficiency was evaluated by flow cytometry and confocal microscopy.

Results

The CM-PFA nanocarriers (126–176 nm) showed hemocompatibility and were internalized by target cells, achieving a 3.7 fold increase in gene expression. In vivo-mimicking 2D co-cultures confirmed a real affinity towards cancer cells and a negligible uptake in normal cells. The targeted nanoparticles penetrated into 3D spheroids to a higher extent than non-targeted nanocarriers. Also, CM-PFA-mediated delivery of p53 tumor suppressor promoted a decrease in tumor-spheroids volume.

Conclusion

These findings corroborate the improved efficiency of this delivery system and demonstrate its potential for application in cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Zhang X-Q, Xu X, Bertrand N, Pridgen E, Swami A, Farokhzad OC. Interactions of nanomaterials and biological systems: implications to personalized nanomedicine. Adv Drug Deliv Rev. 2012;64:1363–84.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Gaspar VM, Correia IJ, Sousa Â, Silva F, Paquete CM, Queiroz JA, et al. Nanoparticle mediated delivery of pure P53 supercoiled plasmid DNA for gene therapy. J Control Release. 2011;156:212–22.

    Article  CAS  PubMed  Google Scholar 

  3. Ragelle H, Vandermeulen G, Préat V. Chitosan-based siRNA delivery systems. J Control Release. 2013;172:207–18.

    Article  CAS  PubMed  Google Scholar 

  4. Carocho M, Ferreira ICFR. The role of phenolic compounds in the fight against cancer–a review. Anti-Cancer Agents Med Chem (Formerly Current Medicinal Chemistry-Anti-Cancer Agents). 2013;13(1236–58).

  5. Cho H, Lai TC, Kwon GS. Poly (ethylene glycol)-block-poly (ε-caprolactone) micelles for combination drug delivery: evaluation of paclitaxel, Cyclopamine and Gossypol in Intraperitoneal Xenograft Models of Ovarian Cancer. J Control Release. 2013;166:1–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Maeda H. Tumor-selective delivery of macromolecular drugs via the EPR effect: background and future prospects. Bioconjug Chem. 2010;21:797–802.

    Article  CAS  PubMed  Google Scholar 

  7. Bergersand G, Benjamin LE. Tumorigenesis and the angiogenic switch. Nat Rev Cancer. 2003;3:401–10.

    Article  Google Scholar 

  8. Decuzzi P, Pasqualini R, Arap W, Ferrari M. Intravascular delivery of particulate systems: does geometry really matter? Pharm Res. 2009;26:235–43.

    Article  CAS  PubMed  Google Scholar 

  9. van de Ven AL, Kim P, Haley OH, Fakhoury JR, Adriani G, Schmulen J, et al. Rapid tumoritropic accumulation of systemically injected plateloid particles and their biodistribution. J Control Release. 2012;158:148–55.

    Article  PubMed Central  PubMed  Google Scholar 

  10. Florence AT. “Targeting” nanoparticles: the constraints of physical laws and physical barriers. J Control Release. 2012;164:115–24.

    Article  CAS  PubMed  Google Scholar 

  11. Hollis CP, Weiss HL, Leggas M, Evers BM, Gemeinhart RA, Li T. Biodistribution and bioimaging studies of hybrid paclitaxel nanocrystals: lessons learned of the EPR effect and image-guided drug delivery. J Control Release. 2013;172:12–21.

    Article  CAS  PubMed  Google Scholar 

  12. Danhier F, Feron O, Préat V. To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J Control Release. 2010;148:135–46.

    Article  CAS  PubMed  Google Scholar 

  13. Farokhzad OC, Cheng J, Teply BA, Sherifi I, Jon S, Kantoff PW, et al. Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. Proc Natl Acad Sci. 2006;103:6315–20.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Chen R, Braun GB, Luo X, Sugahara KN, Teesalu T, Ruoslahti E. Application of a proapoptotic peptide to intratumorally spreading cancer therapy. Cancer Res. 2013;73:1352–61.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Choe U-J, Rodriguez AR, Lee BS, Knowles SM, Wu AM, Deming TJ, et al. Endocytosis and intracellular trafficking properties of transferrin-conjugated block copolypeptide vesicles. Biomacromolecules. 2013;14:1458–64.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Panand J, Feng S-S. Targeting and imaging cancer cells by folate-decorated, quantum dots (QDs)-loaded nanoparticles of biodegradable polymers. Biomaterials. 2009;30:1176–83.

    Article  Google Scholar 

  17. Chen C, Ke J, Zhou XE, Yi W, Brunzelle JS, Li J, et al. Structural basis for molecular recognition of folic acid by folate receptors. Nature. 2013;500:486–9.

    Article  CAS  PubMed  Google Scholar 

  18. Mi Y, Liu Y, Feng S-S. Formulation of docetaxel by folic acid-conjugated d-α-tocopheryl polyethylene glycol succinate 2000 (Vitamin E TPGS2k) micelles for targeted and synergistic chemotherapy. Biomaterials. 2011;32:4058–66.

    Article  CAS  PubMed  Google Scholar 

  19. Garcia-Bennett A, Nees M, Fadeel B. In search of the holy grail: folate-targeted nanoparticles for cancer therapy. Biochem Pharmacol. 2011;81:976–84.

    Article  CAS  PubMed  Google Scholar 

  20. Wu M, Gunning W, Ratnam M. Expression of folate receptor type α in relation to cell type, malignancy, and differentiation in ovary, uterus, and cervix. Cancer Epidemiol Biomark Prev. 1999;8:775–82.

    CAS  Google Scholar 

  21. C. Aranda, K. Urbiola, A. Méndez Ardoy, J.M. García Fernández, C. Ortiz Mellet, and C.T. de Ilarduya. Targeted gene delivery by new folate–polycationic amphiphilic cyclodextrin–DNA nanocomplexes in vitro and in vivo. European Journal of Pharmaceutics and Biopharmaceutics. 2013;85:390–7.

  22. Kogure K, Akita H, Yamada Y, Harashima H. Multifunctional envelope-type nano device (MEND) as a non-viral gene delivery system. Adv Drug Deliv Rev. 2008;60:559–71.

    Article  CAS  PubMed  Google Scholar 

  23. Gaspar V, Marques J, Sousa F, Louro R, Queiroz J, Correia I. Biofunctionalized nanoparticles with pH-responsive and cell penetrating blocks for gene delivery. Nanotechnology. 2013;24:275101.

    Article  CAS  PubMed  Google Scholar 

  24. HogenEschand H, Nikitin AY. Challenges in pre-clinical testing of anti-cancer drugs in cell culture and in animal models. J Control Release. 2012;164:183–6.

    Article  Google Scholar 

  25. Costa EC, Gaspar VM, Marques JG, Coutinho P, Correia IJ. Evaluation of nanoparticle uptake in co-culture cancer models. PLoS One. 2013;8:e70072.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Mehta G, Hsiao AY, Ingram M, Luker GD, Takayama S. Opportunities and challenges for use of tumor spheroids as models to test drug delivery and efficacy. J Control Release. 2012;164:192–204.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. H.-l. Ma, Q. Jiang, S. Han, Y. Wu, J. Cui Tomshine, D. Wang, Y. Gan, G. Zou, and X.-J. Liang. Multicellular tumor spheroids as an in vivo-like tumor model for three-dimensional imaging of chemotherapeutic and nano material cellular penetration. Molecular imaging. 2012;11:487–98.

  28. Vargo-Gogolaand T, Rosen JM. Modelling breast cancer: one size does not fit all. Nat Rev Cancer. 2007;7:659–72.

    Article  Google Scholar 

  29. Yoshii Y, Waki A, Yoshida K, Kakezuka A, Kobayashi M, Namiki H, et al. The use of nanoimprinted scaffolds as 3D culture models to facilitate spontaneous tumor cell migration and well-regulated spheroid formation. Biomaterials. 2011;32:6052–8.

    CAS  PubMed  Google Scholar 

  30. Zhang C, Gao S, Jiang W, Lin S, Du F, Li Z, et al. Targeted minicircle DNA delivery using folate–poly(ethylene glycol)–polyethylenimine as non-viral carrier. Biomaterials. 2010;31:6075–86.

    Article  CAS  PubMed  Google Scholar 

  31. van Gaal EV, van Eijk R, Oosting RS, Kok RJ, Hennink WE, Crommelin DJ, et al. How to screen non-viral gene delivery systems in vitro? J Control Release. 2011;154:218–32.

    Article  PubMed  Google Scholar 

  32. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9:676–82.

    Article  CAS  PubMed  Google Scholar 

  33. Napolitano AP, Dean DM, Man AJ, Youssef J, Ho DN, Rago AP, et al. Scaffold-free three-dimensional cell culture utilizing micromolded nonadhesive hydrogels. Biotechniques. 2007;43:494–500.

    Article  CAS  PubMed  Google Scholar 

  34. Fujiwara Y, Kikuchi H, Aizawa S, Furuta A, Hatanaka Y, Konya C, et al. Direct uptake and degradation of DNA by lysosomes. Autophagy. 2013;9:1167–71.

  35. Chang KL, Higuchi Y, Kawakami S, Yamashita F, Hashida M. Development of lysine-histidine dendron modified chitosan for improving transfection efficiency in HEK293 cells. J Control Release. 2011;156:195–202.

    Article  CAS  PubMed  Google Scholar 

  36. Ernsting MJ, Murakami M, Roy A, Li S-D. Factors controlling the pharmacokinetics, biodistribution and intratumoral penetration of nanoparticles. J Control Release. 2013;172:782–94.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Johnson RN, Kopecková P, Kopecek J. Synthesis and evaluation of multivalent branched HPMA copolymer − fab’ conjugates targeted to the B-cell antigen CD20. Bioconjug Chem. 2008;20:129–37.

    Article  Google Scholar 

  38. Maya S, Kumar LG, Sarmento B, Sanoj Rejinold N, Menon D, Nair SV, et al. Cetuximab conjugated O-carboxymethyl chitosan nanoparticles for targeting EGFR overexpressing cancer cells. Carbohydr Polym. 2013;93:661–9.

    Article  CAS  PubMed  Google Scholar 

  39. Ford J. Red blood cell morphology. Int J Lab Hematol. 2013;35:351–7.

    Article  CAS  PubMed  Google Scholar 

  40. Ditto AJ, Shah KN, Robishaw NK, Panzner MJ, Youngs WJ, Yun YH. The Interactions between l-tyrosine based nanoparticles decorated with folic acid and cervical cancer cells under physiological flow. Mol Pharm. 2012;9:3089–98.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Straussman R, Morikawa T, Shee K, Barzily-Rokni M, Qian ZR, Du J, et al. Tumour micro-environment elicits innate resistance to RAF inhibitors through HGF secretion. Nature. 2012;487:500–4.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Delinassiosand J, Kottaridis S. Interactions between human fibroblasts and HeLa cells in vitro. Biol Cell. 1984;50:9–16.

    Article  Google Scholar 

  43. Gao Y, Li M, Chen B, Shen Z, Guo P, Wientjes MG, et al. Predictive models of diffusive nanoparticle transport in 3-dimensional tumor cell spheroids. AAPS J. 2013;15:816–31.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. LaBarbera DV, Reid BG, Yoo BH. The multicellular tumor spheroid model for high-throughput cancer drug discovery. Expert Opin Drug Discov. 2012;7:819–30.

    Article  CAS  PubMed  Google Scholar 

  45. Hu Q, Gu G, Liu Z, Jiang M, Kang T, Miao D, et al. F3 peptide-functionalized PEG-PLA nanoparticles co-administrated with tLyp-1 peptide for anti-glioma drug delivery. Biomaterials. 2012;34:1135–45.

    Article  PubMed  Google Scholar 

  46. Kim Y-K, Minai-Tehrani A, Lee J-H, Cho C-S, Cho M-H, Jiang H-L. Therapeutic efficiency of folated poly (ethylene glycol)-chitosan-graft-polyethylenimine-Pdcd4 complexes in H-ras12V mice with liver cancer. Int J Nanomedicine. 2013;8:1489–98.

  47. Shen J-M, Guan X-M, Liu X-Y, Lan J-F, Cheng T, Zhang H-X. Luminescent/magnetic hybrid nanoparticles with folate-conjugated peptide composites for tumor-targeted drug delivery. Bioconjug Chem. 2012;23:1010–21.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Eng. Ana Paula for her help with the acquisition of SEM images. This work was supported by the Portuguese Foundation for Science and Technology (FCT), (PTDC/EBB-BIO/114320/2009 and PEst-C/SAU/UI0709/2011). Vítor M. Gaspar is grateful for the PhD fellowship from FCT (SFRH/BD/80402/2011). All the authors do not disclose any conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilídio J. Correia.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1.34 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaspar, V.M., Costa, E.C., Queiroz, J.A. et al. Folate-Targeted Multifunctional Amino Acid-Chitosan Nanoparticles for Improved Cancer Therapy. Pharm Res 32, 562–577 (2015). https://doi.org/10.1007/s11095-014-1486-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-014-1486-0

Key Words

Navigation