Skip to main content
Log in

Physical Approaches to Masking Bitter Taste: Lessons from Food and Pharmaceuticals

  • Expert Review
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Many drugs and desirable phytochemicals are bitter, and bitter tastes are aversive. Food and pharmaceutical manufacturers share a common need for bitterness-masking strategies that allow them to deliver useful quantities of the active compounds in an acceptable form and in this review we compare and contrast the challenges and approaches by researchers in both fields. We focus on physical approaches, i.e., micro- or nano-structures to bind bitter compounds in the mouth, yet break down to allow release after they are swallowed. In all of these methods, the assumption is the degree of bitterness suppression depends on the concentration of bitterant in the saliva and hence the proportion that is bound. Surprisingly, this hypothesis has only rarely been fully tested using a combination of adequate human sensory trials and measurements of binding. This is especially true in pharmaceutical systems, perhaps due to the greater experimental challenges in sensory analysis of drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Block copolymers (e.g., Poloxamers) are sometimes described as surfactants as many of their functional properties are similar (e.g., micelle formation, solubilization of hydrophobic molecules).

References

  1. Meyerhof W, Batram C, Kuhn C, Brockhoff A, Chudoba E, Bufe B, et al. The molecular receptive ranges of human TAS2R bitter taste receptors. Chem Senses. 2010;35:157–70.

    PubMed  CAS  Google Scholar 

  2. Thalmann S, Behrens M, Meyerhof W. Major haplotypes of the human bitter taste receptor TAS2R41 encode functional receptors for chloramphenicol. Biochem Biophys Res Commun. 2013;435:267–73.

    PubMed  CAS  Google Scholar 

  3. Wilson DM, Boughter JD, Lemon CH. Bitter taste stimuli induce differential neural codes in mouse brain. PLoS ONE. 2012;7:e41597.

    PubMed  CAS  PubMed Central  Google Scholar 

  4. Glendinning JI. Is the bitter rejection response always adaptive? Physiol Behav. 1994;56:1217–27.

    PubMed  CAS  Google Scholar 

  5. Steiner JE, Glaser D, Hawilo ME, Berridge KC. Comparative expression of hedonic impact: affective reactions to taste by human infants and other primates. Neurosci Biobehav Rev. 2001;25:53–74.

    PubMed  CAS  Google Scholar 

  6. Shahiwala A. Formulation approaches in enhancement of patient compliance to oral drug therapy. Expert Opin Drug Deliv. 2011;8:1521–9.

    PubMed  CAS  Google Scholar 

  7. Drewnowski A, Gomez-Carneros C. Bitter taste, phytonutrients, and the consumer: a review. Am J Clin Nutr. 2000;72:1424–35.

    PubMed  CAS  Google Scholar 

  8. Negri R, Di Feola M, Di Domenico S, Scala MG, Artesi G, Valente S, et al. Taste perception and food choices. J Pediatr Gastroenterol Nutr. 2012;54:624–9.

    PubMed  Google Scholar 

  9. Nunn T, Williams J. Formulation of medicines for children. Br J Clin Pharmacol. 2005;59:674–6.

    PubMed  PubMed Central  Google Scholar 

  10. Davies EH, Tuleu C. Medicines for children: a matter of taste. J Pediatr. 2008;153:599–604. 604.e1–2.

    PubMed  Google Scholar 

  11. Mennella JA, Beauchamp GK. Optimizing oral medications for children. Clin Ther. 2008;30:2120–32.

    PubMed  PubMed Central  Google Scholar 

  12. Galindo-Cuspinera V. Taste masking : trends and technologies. Prep Foods 2011;51–6.

  13. Douroumis D. Practical approaches of taste masking technologies in oral solid forms. Expert Opin Drug Deliv. 2007;4:417–26.

    PubMed  CAS  Google Scholar 

  14. Hoang Thi TH, Morel S, Ayouni F, Flament MP. Development and evaluation of taste-masked drug for pediatric medicines - application to acetominophen. Int J Pharm. 2012;434:235–42.

  15. Gaudette N, Pickering G. Modifying bitterness in functional food systems. Crit Rev Food Sci Nutr. 2013;53:464–81.

    PubMed  Google Scholar 

  16. Hoffmann EM, Breitenbach A, Breitkreutz J. Advances in orodispersible films for drug delivery. Exp Opin Drug Deliv. 2011;8:299–316.

    CAS  Google Scholar 

  17. Popper R, Kroll JJ. Issues and viewpoints conducting sensory research with children. J Sens Stud. 2005;20:75–87.

    Google Scholar 

  18. Gouin S. Microencapsulation. Trends Food Sci Technol. 2004;15:330–47.

    CAS  Google Scholar 

  19. Duffy VB, Hayes JE, Bartoshuk LM, Snyder DG. Taste: Vertebrate psychophysics. In: Squire L, editor. Encyclopedia of Neurosciences. Oxford: Academic; 2009. p. 881–6.

  20. Boughter JD, Whitney G. Human taste thresholds for sucrose octaacetate. Chem Senses. 1993;18:445–8.

    CAS  Google Scholar 

  21. Matsuo R. Role of saliva in the maintenance of taste sensitivity. Crit Rev Oral Biol Med. 2000;11:216–29.

    PubMed  CAS  Google Scholar 

  22. Chaudhari N, Roper SD. The cell biology of taste. J Cell Biol. 2010;190:285–96.

    PubMed  CAS  PubMed Central  Google Scholar 

  23. Verhagen JV. The neurocognitive bases of human multimodal food perception: consciousness. Brain Res Rev. 2007;53:271–86.

    PubMed  PubMed Central  Google Scholar 

  24. Shi P, Zhang J. Contrasting modes of evolution between vertebrate sweet/umami receptor genes and bitter receptor genes. Mol Biol Evol. 2006;23:292–300.

    PubMed  CAS  Google Scholar 

  25. Hayes JE, Wallace MR, Knopik VS, Herbstman DM, Bartoshuk LM, Duffy VB. Allelic variation in TAS2R bitter receptor genes associates with variation in sensations from and ingestive behaviors toward common bitter beverages in adults. Chem Senses. 2011;36:311–9.

    PubMed  CAS  PubMed Central  Google Scholar 

  26. Hayes JE, Feeney EL, Allen AL. Do polymorphisms in chemosensory genes matter for human ingestive behavior? Food Qual Prefer. 2013;30:202–16.

    PubMed  Google Scholar 

  27. Allen AL, McGeary JE, Knopik VS, Hayes JE. Bitterness of the non-nutritive sweetener acesulfame potassium varies with polymorphisms in TAS2R9 and TAS2R31. Chem Senses. 2013;38:379–89.

    PubMed  CAS  PubMed Central  Google Scholar 

  28. Behrens M, Foerster S, Staehler F, Raguse J-D, Meyerhof W. Gustatory expression pattern of the human TAS2R bitter receptor gene family reveals a heterogenous population of bitter responsive taste receptor cells. J Neurosci. 2007;27:12630–40.

    PubMed  CAS  Google Scholar 

  29. Caicedo A, Roper SD. Taste receptor cells that discriminate between bitter stimuli. Science. 2001;291:1557–60.

    PubMed  CAS  PubMed Central  Google Scholar 

  30. Bartoshuk LM, Pangborn RM. The biological basis of food perception and acceptance. Food Qual Prefer. 1993;4:21–32.

    Google Scholar 

  31. Collings VB. Human taste response as a function of locus of stimulation on the tongue and soft palate. Percept Psychophys. 1974;16:169–74.

    Google Scholar 

  32. Rodgers S, Glen RC, Bender A. Characterizing bitterness: identification of key structural features and development of a classification model. J Chem Inf Model. 2006;46:569–76.

    PubMed  CAS  Google Scholar 

  33. Wiener A, Shudler M, Levit A, Niv MY. Bitter DB: a database of bitter compounds. Nucleic Acids Res. 2012;40:D413–9.

    PubMed  CAS  PubMed Central  Google Scholar 

  34. Ayenew Z, Puri V, Kumar L, Bansal AK. Trends in pharmaceutical taste masking technologies: a patent review. Recent Pathol Drug Deliv Formul. 2009;3:26–39.

    CAS  Google Scholar 

  35. McClements DJ, Decker EA, Park Y, Weiss J. Structural design principles for delivery of bioactive components in nutraceuticals and functional foods. Crit Rev Food Sci Nutr. 2009;577–606.

  36. Salles C, Chagnon M-C, Feron G, Guichard E, Laboure H, Morzel M, et al. In-mouth mechanisms leading to flavor release and perception. Crit Rev Food Sci Nutr. 2011;51:67–90.

    PubMed  CAS  Google Scholar 

  37. Del Valle EMM. Cyclodextrins and their uses: a review. Process Biochem. 2004;39:1033–46.

    Google Scholar 

  38. Szente L, Szejtli J. Cyclodextrins as food ingredients. Trends Food Sci Technol. 2004;15:137–42.

    CAS  Google Scholar 

  39. Astray G, Gonzalez-Barreiro C, Mejuto JC, Rial-Otero R, Simal-Gándara J. A review on the use of cyclodextrins in foods. Food Hydrocoll. 2009;23:1631–40.

    CAS  Google Scholar 

  40. Binello A, Robaldo B, Barge A, Cavalli R, Cravotto G. Synthesis of cyclodextrin-based polymers and their use as debittering agents. J Appl Polym Sci. 2008;107:2549–57.

    CAS  Google Scholar 

  41. Bilensoy E. Nanoparticulate delivery systems based on amphiphilic cyclodextrins. J Biomed Nanotechnol. 2008;4:293–303.

    CAS  Google Scholar 

  42. Brewster ME, Loftsson T. Cyclodextrins as pharmaceutical solubilizers. Adv Drug Deliv Rev. 2007;59:645–66.

    PubMed  CAS  Google Scholar 

  43. Szejtli J, Szente L. Elimination of bitter disgusting tastes of drugs and foods by cyclodextrins. Eur J Pharm Biopharm. 2005;61:115–25.

    PubMed  CAS  Google Scholar 

  44. Astray G, Mejuto JC, Morales J, Rial-Otero R, Simal-Gándara J. Factors controlling flavors binding constants to cyclodextrins and their applications in foods. Food Res Int. 2010;43:1212–8.

    CAS  Google Scholar 

  45. Tamamoto LC, Schmidt SJ, Lee S-Y. Sensory properties of ginseng solutions modified by masking agents. J Food Sci. 2010;75:S341–7.

    PubMed  CAS  Google Scholar 

  46. Konno A, Misaki M, Toda J, Wadaand T, Yasumatsu K. Bitterness reduction of naringin and limonin by β-cyclodextrin. Agric Biol Chem. 1982;46:2203–8.

    CAS  Google Scholar 

  47. Ono NAO, Miyamoto Y, Ishiguro T, Motoyama K, Hirayama F, Iohara D, et al. Reduction of bitterness of antihistaminic drugs by complexation with β-cyclodextrins. J Pharm Sci. 2011;100:1935–43.

    PubMed  CAS  Google Scholar 

  48. Rescifina A, Chiacchio U, Iannazzo D, Piperno A, Romeo G. β-cyclodextrin and caffeine complexes with natural polyphenols from olive and olive oils: NMR, thermodynamic, and molecular modeling studies. J Agric Food Chem. 2010;58:11876–82.

    PubMed  CAS  Google Scholar 

  49. Gaudette NJ, Pickering GJ. The efficacy of bitter blockers on health-related bitterants. J Funct Foods. 2012;4:177–84.

    CAS  Google Scholar 

  50. Funasaki N, Uratsuji I, Okuno T, Hirota S, Neya S. Masking mechanisms of bitter taste of drugs studied with ion selective electrodes. Chem Pharm Bull (Tokyo). 2006;54:1155–61.

    CAS  Google Scholar 

  51. Funasaki N, Sumiyoshi T, Ishikawa S, Neya S. Solution structures of 1:1 complexes of oxyphenonium bromide with - and γ-cyclodextrins. Mol Pharm. 2003;1:166–72.

    Google Scholar 

  52. Linde GA, Junior AL, De Faria EV, Colauto NB, De Moraes FF, Zanin GM. Taste modification of amino acids and protein hydrolysate by α-cyclodextrin. Food Res Int. 2009;42:814–8.

    CAS  Google Scholar 

  53. Linde GA, Junior AL, De Faria EV, Colauto NB, De Moraes FF, Zanin GM. The use of 2D NMR to study β-cyclodextrin complexation and debittering of amino acids and peptides. Food Res Int. 2010;43:187–92.

    CAS  Google Scholar 

  54. Yang S, Mao X-Y, Li F-F, Zhang D, Leng X-J, Ren F-Z, TENG G-X. The improving effect of spray-drying encapsulation process on the bitter taste and stability of whey protein hydrolysate. Eur Food Res Technol. 2012;91–7.

  55. Gaudette NJ, Pickering GJ. Optimizing the orosensory properties of model functional beverages: the influence of novel sweeteners, odorants, bitter blockers, and their mixtures on (+)-catechin. J Food Sci. 2012;77:S226–32.

    PubMed  CAS  Google Scholar 

  56. Stojanov M, Wimmer R, Larsen KIML. Study of the inclusion complexes formed between cetirizine and α -, β -, and γ -cyclodextrin and evaluation on their taste-masking properties. J Pharm Sci. 2011;100:3177–85.

    PubMed  CAS  Google Scholar 

  57. Stojanov M, Larsen KL. Cetrizine release from cyclodextrin formulated compressed chewing gum. Drug Dev Ind Pharm. 2012;38:1061–7.

    PubMed  CAS  Google Scholar 

  58. Jagdale SC, Gawali VU, Kuchekar BS, Chabukswar AR. Formulation and in vitro evaluation of taste-masked oro-dispersible dosage form of diltiazem hydrochloride. Braz J Pharm Sci. 2011;47:907–16.

    CAS  Google Scholar 

  59. Lee C-W, Kim S-J, Youn Y-S, Widjojokusumo E, Lee Y-H, Kim J, et al. Preparation of bitter taste masked cetirizine dihydrochloride/β-cyclodextrin inclusion complex by supercritical antisolvent (SAS) process. J Supercrit Fluids. 2010;55:348–57.

    CAS  Google Scholar 

  60. Patel AR, Vavia PR. Preparation and evaluation of taste masked famotidine formulation using drug/beta-cyclodextrin/polymer ternary complexation approach. AAPS Pharm Sci Technol. 2008;9:544–50.

    CAS  Google Scholar 

  61. Katsuragi Y, Yasumasu T, Kurihara K. Lipoprotein that selectively inhibits taste nerve responses to bitter substances. Brain Res. 1996;713:240–5.

    PubMed  CAS  Google Scholar 

  62. Maehashi K, Matano M, Nonaka M, Udaka S, Yamamoto Y. Riboflavin-binding protein is a novel bitter inhibitor. Chem Senses. 2008;33:57–63.

    PubMed  CAS  Google Scholar 

  63. Thakral S, Thakral NK, Majumdar DK. Eudragit: a technology evaluation. Expert Opin Drug Deliv. 2013;10:131–49.

    PubMed  CAS  Google Scholar 

  64. Soppimath KS, Aminabhavi TM, Kulkarni AR, Rudzinski WE. Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release. 2001;70:1–20.

    PubMed  CAS  Google Scholar 

  65. Barratt G. Colloidal drug carriers: achievements and perspectives. Cell Mol Life Sci. 2003;60:21–37.

    PubMed  CAS  Google Scholar 

  66. Repka MA, Shah S, Lu J, Maddineni S, Morott J, Patwardhan K, et al. Melt extrusion: process to product. Expert Opin Drug Deliv. 2012;9:105–25.

    PubMed  CAS  Google Scholar 

  67. Repka MA, Soumyajit M, Sun B. Applications of hot-melt extrusion for drug delivery. Expert Opinon Drug Deliv. 2008;5:1357–76.

    CAS  Google Scholar 

  68. Van der Linden E, Venema P. Self-assembly and aggregation of proteins. Curr Opin Colloid Interface Sci. 2007;12:158–65.

    Google Scholar 

  69. Jones M-C, Leroux J-C. Polymeric micelles - a new generation of colloidal drug carriers. Eur J Pharm Biopharm. 1999;48:101–11.

    PubMed  CAS  Google Scholar 

  70. Lee JS, Feijen J. Polymersomes for drug delivery: design, formation and characterization. J Control Release. 2012;161:473–83.

    PubMed  CAS  Google Scholar 

  71. Horne DS. Casein structure, self-assembly and gelation. Curr Opin Colloid Interface Sci. 2002;7:456–61.

    CAS  Google Scholar 

  72. Roach A, Dunlap J, Harte F. Association of triclosan to casein proteins through solvent-mediated high-pressure homogenization. J Food Sci. 2009;74:N23–9.

    PubMed  CAS  Google Scholar 

  73. Hamidi M, Azadi A, Rafiei P. Hydrogel nanoparticles in drug delivery. Adv Drug Deliv Rev. 2008;60:1638–49.

    PubMed  CAS  Google Scholar 

  74. Agarwal R, Mittal R, Singh A. Studies of ion-exchange resin complex of chloroquine phosphate. Drug Dev Ind Pharm. 2000;26:773–6.

    PubMed  CAS  Google Scholar 

  75. Yan Y-D, Woo JS, Kang JH, Yong CS, Choi H-G. Preparation and evaluation of taste-masked donepezil hydrochloride orally disintegrating tablets. Biol Pharm Bull (Tokyo). 2010;33:1364–70.

    CAS  Google Scholar 

  76. Shukla D, Chakraborty S, Singh S, Mishra B. Fabrication and evaluation of taste masked resinate of risperidone and its orally disintegrating tablets. Chem Pharm Bull (Tokyo). 2009;57:337–45.

    CAS  Google Scholar 

  77. Malladi M, Jukanti R, Nair R, Wagh S, Padakanti HS, Mateti A. Design and evaluation of taste masked dextromethorphan hydrobromide oral disintegrating tablets. Acta Pharm. 2010;60:267–80.

    PubMed  CAS  Google Scholar 

  78. Madgulkar AR, Bhalekar MR, Padalkar RR. Formulation design and optimization of novel taste masked mouth-dissolving tablets of tramadol having adequate mechanical strength. AAPS Pharm Sci Tech. 2009;10:574–81.

    CAS  Google Scholar 

  79. WeiB G, Knoch A, Laicher A, Stanislaus F, Daniels R. Simple coacervation of hydroxypropyl methylcellulose pthalate (HPMCP). 2: Microencapsulation of ibuprofen. Int J Pharm. 1995;124:97–105.

    Google Scholar 

  80. Lu M, Borodkin S, Woodward L, Li P. A polymer carrier system for taste masking of macrolide antibiotics. Pharm Res. 1991;8:706–12.

    PubMed  CAS  Google Scholar 

  81. Yajima T, Nogata A, Demachi M, Umeki N, Itai S, Yunoki N, et al. Particle design for taste-masking using a spray-congealing technique. Chem Pharm Bull (Tokyo). 1996;44:187–91.

    CAS  Google Scholar 

  82. Hashimoto Y, Tanaka M, Kishimoto H, Shiozawa H, Hasegawa K, Matsuyama K, et al. Preparation, characterization and taste-masking properties of polyvinylacetal diethylaminoacetate microspheres containing trimebutine. J Pharm Pharmacol. 2002;54:1323–8.

    PubMed  CAS  Google Scholar 

  83. Maniruzzaman M, Boateng JS, Bonnefille M, Aranyos A, Mitchell JC, Douroumis D. Taste masking of paracetamol by hot-melt extrusion: an in vitro and in vivo evaluation. Eur J Pharm Biopharm. 2011;80:433–42.

    PubMed  Google Scholar 

  84. Gryczke A, Schminke S, Maniruzzaman M, Beck J, Douroumis D. Development and evaluation of orally disintegrating tablets (ODTs) containing Ibuprofen granules prepared by hot melt extrusion. Colloids Surf B: Biointerfaces. 2011;86:275–84.

    PubMed  CAS  Google Scholar 

  85. Molina Ortiz SE, Mauri A, Monterrey-Quintero ES, Trindade MA, Santana AS, Favaro-Trindade CS. Production and properties of casein hydrolysate microencapsulated by spray drying with soybean protein isolate. LWT Food Sci Technol. 2009;42:919–23.

    CAS  Google Scholar 

  86. Rocha GA, Trindade MA, Netto FM, Favaro-Trindade CS. Microcapsules of a casein hydrolysate: production, characterization, and application in protein bars. Food Sci Technol Int. 2009;15:407–13.

    CAS  Google Scholar 

  87. Favaro-Trindade CS, Santana AS, Monterrey-Quintero ES, Trindade MA, Netto FM. The use of spray drying technology to reduce bitter taste of casein hydrolysate. Food Hydrocoll. 2010;24:336–40.

    CAS  Google Scholar 

  88. Pripp AH, Busch J, Vreeker R. Effect of viscosity, sodium caseinate and oil on bitterness perception of olive oil phenolics. Food Qual Prefer. 2004;15:375–82.

    Google Scholar 

  89. Smid SD, Maag JL, Musgrave IF. Dietary polyphenol-derived protection against neurotoxic β-amyloid protein: from molecular to clinical. Food Funct. 2012;3:1242–50.

    PubMed  Google Scholar 

  90. Bieschke J, Russ J, Friedrich RP, Ehrnhoefer DE, Wobst H, Neugebauer K, et al. EGCG remodels mature alpha-synuclein and amyloid-beta fibrils and reduces cellular toxicity. Proc Natl Acad Sci U S A. 2010;107:7710–5.

    PubMed  CAS  PubMed Central  Google Scholar 

  91. Shpigelman A, Cohen Y, Livney YD. Thermally-induced β-lactoglobulin–EGCG nanovehicles: loading, stability, sensory and digestive-release study. Food Hydrocoll. 2012;29:57–67.

    CAS  Google Scholar 

  92. Attwood D, Florence AT. Surfactants. Phys. Pharm. London: Pharmaceutical Press; 2008;43–62.

  93. Li J, Tao L. Pharmaceutical applications of non-ionic surfactants. In: Wendt PL, Hoystead DS, editors. Non-ionic surfactants. New York: Nova Science Publishers, Inc.; 2010. p. 173–5.

    Google Scholar 

  94. Katsuragi Y, Mitsui Y, Umeda T. Basic studies for the practical use of bitterness inhibitors: selective inhibition of bitterness by phospholipids. Pharm Res. 1997;14:720–4.

    PubMed  CAS  Google Scholar 

  95. Stephan A, Steinhart H. Bitter taste of unsaturated free fatty acids in emulsions: contribution to the off-flavour of soybean lecithins. Eur Food Res Technol. 2000;212:17–25.

    CAS  Google Scholar 

  96. Waters LJ, Hussain T, Parkes GMB. Titration calorimetry of surfactant–drug interactions: Micelle formation and saturation studies. J Chem Thermodyn. 2012;53:36–41.

    CAS  Google Scholar 

  97. McClements DJ. Nanoemulsions versus microemulsions: terminology, differences, and similarities. Soft Matter. 2012;8:1719.

    CAS  Google Scholar 

  98. Malmsten M. Soft drug delivery systems. Soft Matter. 2006;2:760–9.

    CAS  Google Scholar 

  99. Taylor TM, Davidson PM, Bruce BD, Weiss J. Liposomal nanocapsules in food science and agriculture. Crit Rev Food Sci Nutr. 2005;45:587–605.

    PubMed  CAS  Google Scholar 

  100. Sirk TW, Brown EF, Sum AK, Friedman M. Molecular dynamics study on the biophysical interactions of seven green tea catechins with lipid bilayers of cell membranes. J Agric Food Chem. 2008;56:7750–8.

    PubMed  CAS  Google Scholar 

  101. Kajiya K, Kumazawa S, Nakayama T. Effect of external factors on the interaction of tea catechins with lipid bilayers. Biosci Biotechnol Biochem. 2002;66:2330–5.

    PubMed  CAS  Google Scholar 

  102. Suzuki H, Onishi H, Takahashi Y, Iwata M, Machida Y. Development of oral acetominophen chewable tablets with inhibited bitter taste. Int J Pharmacol. 2003;251:123–32.

    CAS  Google Scholar 

  103. Koprivnjak O, Škevin D, Petričević S, Brkić Bubola K, Mokrovčak Ž. Bitterness, odor properties and volatile compounds of virgin olive oil with phospholipids addition. LWT Food Sci Technol. 2009;42:50–5.

    CAS  Google Scholar 

  104. Gülseren I, Guri A, Corredig M. Encapsulation of Tea polyphenols in nanoliposomes prepared with milk phospholipids and their effect on the viability of HT-29 human carcinoma cells. Food Dig. 2012. doi:10.1007/s13228-012-0019-8.

    Google Scholar 

  105. Sun Y, Hung W-C, Chen F-Y, Lee C-C, Huang HW. Interaction of tea catechin (−)-epigallocatechin gallate with lipid bilayers. Biophys J. 2009;96:1026–35.

    PubMed  CAS  PubMed Central  Google Scholar 

  106. Leo A, Hansch C, Elkins D. Partition coefficients and their uses. Chem Rev. 1971;71:525–616.

    CAS  Google Scholar 

  107. Costa M, Losada-Barreiro S, Paiva-Martins F, Bravo-Díaz C. Effects of acidity, temperature and emulsifier concentration on the distribution of caffeic acid in stripped corn and olive oil-in-water emulsions. J Am Oil Chem Soc. 2013;90:1629–36.

    CAS  Google Scholar 

  108. Schwarz K, Frankel EN, German JB. Partition behaviour of antioxidative phenolic compounds in heterophasic systems. Lipid/Fett. 1996;98:115–21.

    CAS  Google Scholar 

  109. Sangster J. Octanol-water partition coefficients of simple organic compounds. J Phys Chem Ref Data. 1989;18:1111–227.

    CAS  Google Scholar 

  110. Tetko IV, Bruneau P. Application of ALOGPS to predict 1-octanol/water distribution coefficients, logP, and logD, of AstraZeneca in-house database. J Pharm Sci. 2004;93:3103–10.

    PubMed  CAS  Google Scholar 

  111. Huang S, Frankel EN, Aeschbach R, German JB. Partition of selected antioxidants in corn oil-water model. J Agric Food Chem. 1997;45.

  112. Lisete-Torres P, Losada-Barreiro S, Albuquerque H, Sánchez-Paz V, Paiva-Martins F, Bravo-Díaz C. Distribution of hydroxytyrosol and hydroxytyrosol acetate in olive oil emulsions and their antioxidant efficiency. J Agric Food Chem. 2012;60:7318–25.

    PubMed  CAS  Google Scholar 

  113. Bahal SM, Romansky JM, Alvarez FJ. Medium chain triglycerides as vehicle for palatable oral liquids. Pharm Dev Technol. 2003;8:111–5.

  114. McClements DJ. Food emulsions. Principles, practices and techniques. 2nd ed. Boca Raton: CRC Press; 2004.

    Google Scholar 

  115. Bunjes H. Structural properties of solid lipid based colloidal drug delivery systems. Curr Opin Colloid Interface Sci. 2011;16:405–11.

    CAS  Google Scholar 

  116. Fathi M, Mozafari MR, Mohebbi M. Nanoencapsulation of food ingredients using lipid based delivery systems. Trends Food Sci Technol. 2011;23:13–27.

    Google Scholar 

  117. Yucel U, Elias RJ, Coupland JN. Emulsions; Nanoemulsions and Solid Lipid Nanoparticles as Delivery Systems in Food. In: Dunford N, ed. Food Ind. Prod. Bioprocess. Wiley-Blackwell. 2012;145–66.

  118. Yucel U, Elias RJ, Coupland JN. Effect of liquid oil on the distribution and reactivity of a hydrophobic solute in solid lipid nanoparticles. J Am Oil Chem Soc. 2013;90:819–24.

    CAS  Google Scholar 

  119. McClements DJ. Theoretical analysis of factors affecting the formation and stability of multilayered colloidal dispersions. Langmuir. 2005;21:9777–85.

    PubMed  CAS  Google Scholar 

  120. Ghosh S, Peterson DG, Coupland JN. Effects of droplet crystallization and melting on the aroma release properties of a model oil-in-water emulsion. J Agric Food Chem. 2006;54:1829–37.

    PubMed  CAS  Google Scholar 

  121. Stockmann H, Schwarz K. Partitioning of low molecular weight compounds in oil-in-water emulsions. Langmuir. 1999;15:6142–9.

    Google Scholar 

  122. Gunaseelan K, Romsted LS, Gallego M-JP, González-Romero E, Bravo-Díaz C. Determining alpha-tocopherol distributions between the oil, water, and interfacial regions of macroemulsions: novel applications of electroanalytical chemistry and the pseudophase kinetic model. Adv Colloid Interface Sci. 2006;123–126:303–11.

    PubMed  Google Scholar 

  123. Losada-Barreiro S, Sánchez-Paz V, Bravo-Díaz C, Paiva-Martins F, Romsted LS. Temperature and emulsifier concentration effects on gallic acid distribution in a model food emulsion. J Colloid Interface Sci. 2012;370:73–9.

    PubMed  CAS  Google Scholar 

  124. Yucel U, Elias RJ, Coupland JN. Solute distribution and stability in emulsion-based delivery systems: an EPR study. J Colloid Interface Sci. 2012;377:105–13.

    PubMed  CAS  Google Scholar 

  125. Watrobska-Swietilowska D, Sznitowska M. Partitioning of parabens between phases of submicron emulsions stabilized with egg lecithin. Int J Pharm. 2006;312:174–8.

    Google Scholar 

  126. Mackey A. Discernment of taste substances as affected by solvent medium. Food Res. 1958;23:580–3.

    CAS  Google Scholar 

  127. Lynch J, Liu Y-H, Mela DJ, MacFie HJH. A time—intensity study of the effect of oil mouthcoatings on taste perception. Chem Senses. 1993;18:121–9.

    CAS  Google Scholar 

  128. Metcalf KL, Vickers ZM. Taste intensities of oil-in-water emulsions with varying fat content. J Sens Stud. 2001;17:379–90.

    Google Scholar 

  129. Ares G, Barreiro C, Deliza R, Gámbaro A. Alternatives to reduce the bitterness, astringency and characteristic flavour of antioxidant extracts. Food Res Int. 2009;42:871–8.

    CAS  Google Scholar 

  130. Mattes RD. Effects of linoleic acid on sweet, sour, salty, and bitter taste thresholds and intensity ratings of adults. Am J Physiol Gastrointest Liver Physiol. 2007;292:G1243–8.

    PubMed  CAS  Google Scholar 

  131. Keast RS. Modification of the bitterness of caffeine. Food Qual Pref. 2008;19:465–472.

  132. Bennett SM, Zhou L, Hayes JE. Using milk fat to reduce the irritation and bitter taste of ibuprofen. Chemosens Percept. 2012;5:231–6.

    PubMed  CAS  PubMed Central  Google Scholar 

  133. García-Mesa JA, Pereira-Caro G, Fernández-Hernández A, García-Ortíz Civantos C, Mateos R. Influence of lipid matrix in the bitterness perception of virgin olive oil. Food Qual Prefer. 2008;19:421–30.

    Google Scholar 

  134. Koriyama T, Wongso S, Watanabe K, Abe H. Fatty acid compositions of oil species affect the 5 basic taste perceptions. J Food Sci. 2002;67:868–73.

    CAS  Google Scholar 

  135. Tucker RM, Mattes RD. Are free fatty acids effective taste stimuli in humans? J Food Sci. 2012;77:S148–51.

    PubMed  CAS  Google Scholar 

  136. Wieser H, Stempfl W, Grosch W, Belitz H. Studies of the bitter taste of fatty acid emulsions. Z Lebensm Forschungsergeb. 1984;179:447–9.

    CAS  Google Scholar 

  137. Thurgood JE, Martini S. Effects of three emulsion compositions on taste thresholds and intensity ratings of five taste compounds. J Sens Stud. 2010;25:861–75.

    Google Scholar 

  138. Mendanha DV, Molina Ortiz SE, Favaro-Trindade CS, Mauri A, Monterrey-Quintero ES, Thomazini M. Microencapsulation of casein hydrolysate by complex coacervation with SPI/pectin. Food Res Int. 2009;42:1099–104.

    CAS  Google Scholar 

  139. Suzuki H, Onishi H, Hisamatsu S, Masuda K, Takahashi Y, Iwata M, et al. Acetominophen-containing chewable tablets with suppressed bitterness and improved oral feeding. Int J Pharm. 2004;278:51–61.

    PubMed  CAS  Google Scholar 

  140. Nakaya K, Kohata T, Doisaki N, Ushio H, Ohshima T. Effect of oil droplet sizes of oil-in-water emulsion on the taste impressions of added tastants. Fish Sci. 2006;72:877–83.

    CAS  Google Scholar 

  141. Barylko-Pikielna N, Martin A, Mela DJ. Perception of taste and viscosity of oil-in-water and water-in-oil emulsions. J Food Sci. 1994;59:1318–21.

  142. Di Mattia CD, Sacchetti G, Mastrocola D, Sarker DK, Pittia P. Surface properties of phenolic compounds and their influence on the dispersion degree and oxidative stability of olive oil O/W emulsions. Food Hydrocoll. 2010;24:652–8.

    Google Scholar 

  143. Luo Z, Murray BS, Yusoff A, Morgan MRA, Povey MJW, Day AJ. Particle-stabilizing effects of flavonoids at the oil-water interface. J Agric Food Chem. 2011;59:2636–45.

    PubMed  CAS  Google Scholar 

  144. Caballero I, Blanco CA, Porras M. Iso-α-acids, bitterness and loss of beer quality during storage. Trends Food Sci Technol. 2012;26:21–30.

    CAS  Google Scholar 

  145. Simpson W, Hughes P. Stabilization of foams by hop-derived bitter acids chemical interactions in beer foam. Cerevisia Biotechnol. 1994;19:39044.

    Google Scholar 

  146. Van Aken GA, Vingerhoeds MH, de Hoog EHA. Food colloids under oral conditions. Curr Opin Colloid Interface Sci. 2007;12:251–62.

    Google Scholar 

  147. Vingerhoeds MH, Blijdenstein TBJ, Zoet FD, van Aken GA. Emulsion flocculation induced by saliva and mucin. Food Hydrocoll. 2005;19:915–22.

    CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

We are grateful to Prof. Jochen Weiss and Prof. Heike Bunjes for many helpful discussions and hospitality during a sabbatical leave for one of us (JNC). This work was partly supported by USDA Hatch Project PEN04332 funds, and a National Institutes of Health grant from the NIDCD to JEH [DC010904].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John N. Coupland.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coupland, J.N., Hayes, J.E. Physical Approaches to Masking Bitter Taste: Lessons from Food and Pharmaceuticals. Pharm Res 31, 2921–2939 (2014). https://doi.org/10.1007/s11095-014-1480-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-014-1480-6

KEY WORDS

Navigation