Skip to main content
Log in

Efficacy of Piroxicam Plus Cisplatin-Loaded PLGA Nanoparticles in Inducing Apoptosis in Mesothelioma Cells

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Combined treatment based on cisplatin-loaded Poly(D,L-lactic-co-glicolic)acid (PLGA) nanoparticles (NP-C) plus the NSAID piroxicam was used as novel treatment for mesothelioma to reduce side effects related to cisplatin toxicity.

Methods

PLGA nanoparticles were prepared by double emulsion solvent evaporation method. Particle size, drug release profile and in vitro cellular uptake were characterized by TEM, DLS, LC/MS and fluorescence microscopy. MSTO-211H cell line was used to analyse NP-C biological efficacy by FACS and protein analysis.

Results

Cisplatin was encapsulated in 197 nm PLGA nanoparticles with 8.2% drug loading efficiency and 47% encapsulation efficiency. Cisplatin delivery from nanoparticles reaches 80% of total encapsulated drug in 14 days following a triphasic trend. PLGA nanoparticles in MSTO-211H cells were localized in the perinuclear space NP-C in combination with piroxicam induced apoptosis using a final cisplatin concentration 1.75 fold less than free drug. Delivered cisplatin cooperated with piroxicam in modulating cell cycle regulators as caspase-3, p53 and p21.

Conclusions

Cisplatin loaded PLGA nanoparticles plus piroxicam showed a good efficacy in exerting cytotoxic activity and inducing the same molecular apoptotic effects of the free drugs. Sustained cisplatin release allowed to use less amount of drug, decreasing toxic side effects. This novel approach could represent a new strategy for mesothelioma treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

ACN:

Acetonitrile

C:

Cisplatin

C/P:

Cisplatin plus piroxicam

CE:

Collision energy

COX:

Cyclooxygenase

CTRL:

Untreated cells

DDTC:

Diethyldithiocarbamate

DLS:

Dynamic light scattering

DMF:

N,N-dimethylformamide

DP:

Declustering potential

DPH:

1,6-Diphenyl-1,3,5-hexatriene

ECL:

Enhanced ChemiLuminescence

EE:

Encapsulation efficiency

EP:

Entrance potential

FACS:

Fluorescence activated cell sorting

FBS:

Fetal bovine serum

FITC:

Fluorescein isothiocyanate

HPLC:

High performance liquid chromatography

i :

Cisplatin release phases

k i :

Release constant value for each release phase

LC/MS:

Liquid chromatography/mass spectrometry

LE:

Loading efficiency

NP:

PLGA-nanoparticles

NP-C:

Cisplatin-loaded PLGA nanoparticles

NP-C/P:

Cisplatin-loaded nanoparticles plus piroxicam

NP-F:

Fluorescent PLGA nanoparticles

NSAID:

Non-steroidal anti-inflammatory drug

PBS:

Phosphate buffered saline

PDI:

Poly dispersion index

PI:

Propidium iodide

PLGA:

Poly(D,L-lactic-co-glicolic)acid

Pt-(DDTC)2 :

Cisplatin-DDTC derivative

PVA:

Polyvinyl alcohol

PVDF:

Polyvinylidene fluoride

RCC1:

Regulator of chromosome condensation 1

RIPA:

Radio-immunoprecipitation assay buffer

RPMI-1640:

Roswell Park Memorial Institute culture medium

SDS-PAGE:

Sodium dodecyl sulphate - polyacrylamide gel electrophoresis

SIM:

Selected ion monitoring

TEM:

Transmission electron microscopy

TOC:

Total organic carbon

w/o:

Water/oil

w/o/w:

water/oil/water

y i (0):

Cisplatin concentration at the beginning of each release phase

y i (t):

Cisplatin amount released over the time

References

  1. Treasure T. The learning curve. BMJ. 2004;329(7463):424.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Crispi S, Cardillo I, Spugnini EP, Citro G, Menegozzo S, Baldi A. Biological agents involved in malignant mesothelioma: relevance as biomarkers or therapeutic targets. Curr Cancer Drug Targets. 2010;10(1):19–26.

    Article  CAS  PubMed  Google Scholar 

  3. Pistolesi M, Rusthoven J. Malignant pleural mesothelioma: update, current management, and newer therapeutic strategies. Chest. 2004;126(4):1318–29.

    Article  PubMed  Google Scholar 

  4. Vogelzang NJ, Rusthoven JJ, Symanowski J, Denham C, Kaukel E, Ruffie P, et al. Phase III study of pemetrexed in combination with cisplatin versus cisplatin alone in patients with malignant pleural mesothelioma. J Clin Oncol. 2003;21(14):2636–44.

    Article  CAS  PubMed  Google Scholar 

  5. Favaretto AG, Aversa SM, Paccagnella A, Manzini Vde P, Palmisano V, Oniga F, et al. Gemcitabine combined with carboplatin in patients with malignant pleural mesothelioma: a multicentric phase II study. Cancer. 2003;97(11):2791–7.

    Article  CAS  PubMed  Google Scholar 

  6. Spugnini EP, Cardillo I, Verdina A, Crispi S, Saviozzi S, Calogero R, et al. Piroxicam and cisplatin in a mouse model of peritoneal mesothelioma. Clin Cancer Res. 2006;12(20 Pt 1):6133–43.

    Article  CAS  PubMed  Google Scholar 

  7. Baldi A, Piccolo MT, Boccellino MR, Donizetti A, Cardillo I, La Porta R, et al. Apoptosis induced by piroxicam plus cisplatin combined treatment is triggered by p21 in mesothelioma. PLoS ONE. 2011;6(8):e23569.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Kelland L. The resurgence of platinum-based cancer chemotherapy. Nat Rev Cancer. 2007;7(8):573–84.

    Article  CAS  PubMed  Google Scholar 

  9. Wang D, Lippard SJ. Cellular processing of platinum anticancer drugs. Nat Rev Drug Discov. 2005;4(4):307–20.

    Article  CAS  PubMed  Google Scholar 

  10. Jain RK, Stylianopoulos T. Delivering nanomedicine to solid tumors. Nat Rev Clin Oncol. 2010;7(11):653–64.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Li Y, Lim S, Ooi CP. Fabrication of cisplatin-loaded poly(lactide-co-glycolide) composite microspheres for osteosarcoma treatment. Pharm Res. 2012;29(3):756–69.

    Article  CAS  PubMed  Google Scholar 

  12. Dong Y, Feng SS. Poly(D, L-lactide-co-glycolide) (PLGA) nanoparticles prepared by high pressure homogenization for paclitaxel chemotherapy. Int J Pharm. 2007;342(1–2):208–14.

    Article  CAS  PubMed  Google Scholar 

  13. Grama C, Ankola D, MNV RK. Poly(lactide-co-glycolide) nanoparticles for peroral delivery of bioactives. Curr Opin Colloid Interface Sci. 2011;16:238–45.

    Article  CAS  Google Scholar 

  14. Betancourt T, Brown B, Brannon-Peppas L. Doxorubicin-loaded PLGA nanoparticles by nanoprecipitation: preparation, characterization and in vitro evaluation. Nanomedicine. 2007;2(2):219–32.

    Article  CAS  PubMed  Google Scholar 

  15. Murugeshu A, Astete C, Leonardi C, Morgan T, Sabliov CM. Chitosan/PLGA particles for controlled release of alpha-tocopherol in the GI tract via oral administration. Nanomedicine. 2011;6(9):1513–28.

    Article  CAS  PubMed  Google Scholar 

  16. Valencia PM, Pridgen EM, Perea B, Gadde S, Sweeney C, Kantoff PW, et al. Synergistic cytotoxicity of irinotecan and cisplatin in dual-drug targeted polymeric nanoparticles. Nanomedicine. 2013;8(5):687–98.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Vangara KK, Liu JL, Palakurthi S. Hyaluronic acid-decorated PLGA-PEG nanoparticles for targeted delivery of SN-38 to ovarian cancer. Anticancer Res. 2013;33(6):2425–34.

    CAS  PubMed  Google Scholar 

  18. Zou L, Song X, Yi T, Li S, Deng H, Chen X, et al. Administration of PLGA nanoparticles carrying shRNA against focal adhesion kinase and CD44 results in enhanced antitumor effects against ovarian cancer. Cancer Gene Ther. 2013;20(4):242–50.

    Article  CAS  PubMed  Google Scholar 

  19. Sadhukha T, Prabha S. Encapsulation in Nanoparticles Improves Anti-cancer Efficacy of Carboplatin. AAPS PharmSciTech. 2014

  20. Tang Q, Wang Y, Huang R, You Q, Wang G, Chen Y, et al. Preparation of anti-tumor nanoparticle and its inhibition to peritoneal dissemination of colon cancer. PLoS ONE. 2014;9(6):e98455.

    Article  PubMed Central  PubMed  Google Scholar 

  21. Pinon-Segundo E, Nava-Arzaluz MG, Lechuga-Ballesteros D. Pharmaceutical polymeric nanoparticles prepared by the double emulsion- solvent evaporation technique. Recent pat on drug deliv & formulation. 2012;6(3):224–35.

    Article  CAS  Google Scholar 

  22. Jin C, Bai L, Wu H, Song W, Guo G, Dou K. Cytotoxicity of paclitaxel incorporated in PLGA nanoparticles on hypoxic human tumor cells. Pharm Res. 2009;26(7):1776–84.

    Article  CAS  PubMed  Google Scholar 

  23. Ranall MV, Gabrielli BG, Gonda TJ. High-content imaging of neutral lipid droplets with 1,6-diphenylhexatriene. BioTechniques. 2011;51(1):35–6, 8–42.

  24. Strober W. Trypan blue exclusion test of cell viability. Curr Protoc Immunol. 2001; Appendix 3: Appendix 3B.

  25. Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES, et al. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell. 1997;91(4):479–89.

    Article  CAS  PubMed  Google Scholar 

  26. Piccolo MT, Crispi S. The dual role played by p21 May influence the apoptotic or anti-apoptotic fate in cancer. J of Cancer Res Updat. 2012;1:189–202.

    Google Scholar 

  27. Bala I, Hariharan S, Kumar MN. PLGA nanoparticles in drug delivery: the state of the art. Crit Rev Ther Drug Carrier Syst. 2004;21(5):387–422.

    Article  CAS  PubMed  Google Scholar 

  28. Merisko-Liversidge EM, Liversidge GG. Drug nanoparticles: formulating poorly water-soluble compounds. Toxicol Pathol. 2008;36(1):43–8.

    Article  CAS  PubMed  Google Scholar 

  29. De Jong WH, Borm PJ. Drug delivery and nanoparticles:applications and hazards. Int J Nanomedicine. 2008;3(2):133–49.

    Article  PubMed Central  PubMed  Google Scholar 

  30. Spugnini EP, Crispi S, Scarabello A, Caruso G, Citro G, Baldi A. Piroxicam and intracavitary platinum-based chemotherapy for the treatment of advanced mesothelioma in pets: preliminary observations. J of exp & clin cancer res : CR. 2008;27:6.

    Article  PubMed Central  PubMed  Google Scholar 

  31. Gao Y, Chen L, Gu W, Xi Y, Lin L, Li Y. Targeted nanoassembly loaded with docetaxel improves intracellular drug delivery and efficacy in murine breast cancer model. Mol Pharm. 2008;5(6):1044–54.

    Article  CAS  PubMed  Google Scholar 

  32. Huang M, Ma Z, Khor E, Lim LY. Uptake of FITC-chitosan nanoparticles by A549 cells. Pharm Res. 2002;19(10):1488–94.

    Article  CAS  PubMed  Google Scholar 

  33. Mo L, Hou L, Guo D, Xiao X, Mao P, Yang X. Preparation and characterization of teniposide PLGA nanoparticles and their uptake in human glioblastoma U87MG cells. Int J Pharm. 2012;436(1–2):815–24.

    Article  CAS  PubMed  Google Scholar 

  34. Cummings BS, Schnellmann RG. Cisplatin-induced renal cell apoptosis: caspase 3-dependent and -independent pathways. The J of pharmacol and exp ther. 2002;302(1):8–17.

    Article  CAS  Google Scholar 

  35. Ferraro-Peyret C, Quemeneur L, Flacher M, Revillard JP, Genestier L. Caspase-independent phosphatidylserine exposure during apoptosis of primary T lymphocytes. J Immunol. 2002;169(9):4805–10.

    Article  PubMed  Google Scholar 

  36. el-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM, et al. WAF1, a potential mediator of p53 tumor suppression. Cell. 1993;75(4):817–25.

  37. Vousden KH, Lu X. Live or let die: the cell’s response to p53. Nat Rev Cancer. 2002;2(8):594–604.

    Article  CAS  PubMed  Google Scholar 

  38. Cheng L, Jin C, Lv W, Ding Q, Han X. Developing a highly stable PLGA-mPEG nanoparticle loaded with cisplatin for chemotherapy of ovarian cancer. PLoS ONE. 2011;6(9):e25433.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Gryparis EC, Hatziapostolou M, Papadimitriou E, Avgoustakis K. Anticancer activity of cisplatin-loaded PLGA-mPEG nanoparticles on LNCaP prostate cancer cells. Eur J Pharm Biopharm. 2007;67(1):1–8.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

We thank INBB for supporting Dr. Maria Teresa Piccolo and Dr. Ciro Menale with fellowships; Dr. Laura Pisapia for helping in FACS analysis; Dr. Rosarita Tatè for helping in microscopy analysis; the FACS and the IM IGB Facilities. We thank Prof. Maria Rosaria Chiummo for help in the revision of the manuscript. We also thank the Neapolitan section of the IIT, in particular Dr. RaffaeleVecchione, for using Zetasizer.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Damiano Gustavo Mita or Stefania Crispi.

Additional information

Ciro Menale and Maria Teresa Piccolo equally contributed to the work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Menale, C., Piccolo, M.T., Favicchia, I. et al. Efficacy of Piroxicam Plus Cisplatin-Loaded PLGA Nanoparticles in Inducing Apoptosis in Mesothelioma Cells. Pharm Res 32, 362–374 (2015). https://doi.org/10.1007/s11095-014-1467-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-014-1467-3

KEY WORDS

Navigation