Skip to main content

Advertisement

Log in

Dissolution Testing of Powders for Inhalation: Influence of Particle Deposition and Modeling of Dissolution Profiles

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

The aim of this study was to investigate influencing factors on the dissolution test for powders for pulmonary delivery with USP apparatus 2 (paddle apparatus).

Methods

We investigated the influence of dose collection method, membrane holder type and the presence of surfactants on the dissolution process. Furthermore, we modeled the in vitro dissolution process to identify influencing factors on the dissolution process of inhaled formulations based on the Nernst-Brunner equation.

Results

A homogenous distribution of the powder was required to eliminate mass dependent dissolution profiles. This was also found by modeling the dissolution process under ideal conditions. Additionally, it could be shown that influence on the diffusion pathway depends on the solubility of the substance.

Conclusion

We demonstrated that the use of 0.02% DPPC in the dissolution media results in the most discriminating and reproducible dissolution profiles.

In the model section we demonstrated that the dissolution process depends strongly on saturation solubility and particle size. Under defined assumptions we were able show that the model is predicting the experimental dissolution profiles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

aACI:

Abbreviated Andersen cascade impactor

ACI:

Andersen cascade impactor

ACN:

Acetonitrile

API:

Active pharmaceutical ingredient

DPPC:

Dipalmytoylphosphatidylcholine

EMA:

European Medicines Agency

FDA:

Food and Drug Administration

FPD:

Fine particle dose

HPLC:

High performance liquid chromatography

mACI:

Abbreviated Andersen cascade impactor with stage extension and modified filter stage

PBS:

Phosphate buffered saline

RC:

Regenerated cellulose membrane

RP:

Reversed phase

SDS:

Sodium dodecyl sulfate

SE:

Stage extension

SEM:

Scanning electron microscopy

USP:

United States Pharmacopoeia

ρ:

Density

ηwater :

Dynamic viscosity of water at 37°C

cs :

Solubility of drug

ct :

Concentration of the drug in the solution at time t

D:

Diffusion coefficient of substance in the solvent

daero :

Aerodynamic particle diameter

dgeo :

Geometric particle diameter

dm:

Mass of solid material at time t

dt:

Time interval

f1 :

Difference factor

f2 :

Similarity factor

h:

Diffusion (boundary) layer thickness

k:

Shape factor

m:

Amount of drug released

Ne :

Number of particles in a particle size fraction

r:

Radius

Rt :

Mean percent drug released at each time point for reference product

S:

The surface area of the particles

Se :

The surface area of each particle size fraction

t:

Time

Tt :

Mean percent drug released at each time point for test product

V:

Volume

VM :

Van der Waals volume

Xe (0):

The amount of undissolved drug in a particle size group

Xe(t):

The amount of undissolved drug in a particle size group e

Xsum(t):

Total amount of undissolved drug at time t

References

  1. Gray VA, Hickey AJ, Balmer P, Davies NM, Dunbar C, Foster TS, et al. The inhalation ad hoc advisory panel for the USP performance tests of inhalation dosage forms. Pharmacopeial Forum. 2008;34:1068–74.

    Google Scholar 

  2. United States Pharmacopeial Convention. Dissolution. In United States Pharamacopeia and National Formulary, Rockville, 2011.

  3. United States Pharmacopeial Convention. Drug release. In United States Pharmacopeia and National Formulary, Rockville, 2013.

  4. United States Pharmacopeial Convention. Aerosol, nasal sprays, metered dose inhalers, and dry powder inhaler. In United States Pharmacopeia and National Formulary, Maryland, 2012.

  5. Labouta HI, Schneider M. Tailor-made biofunctionalized nanoparticles using layer-by-layer technology. Int J Pharm. 2010;395:236–42.

    Article  PubMed  CAS  Google Scholar 

  6. Riley T, Christopher D, Arp J, Casazza A, Colombani A, Cooper A, et al. Challenges with developing in vitro dissolution tests for orally inhaled products (OIPs). AAPS PharmSciTech. 2012;13:978–89.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  7. May S, Jensen B, Wolkenhauer M, Schneider M, Lehr CM. Dissolution techniques for in vitro testing of dry powders for inhalation. Pharm Res. 2012;29:2157–66.

    Article  PubMed  CAS  Google Scholar 

  8. Salama RO, Traini D, Chan HK, Young PM. Preparation and characterisation of controlled release co-spray dried drug-polymer microparticles for inhalation 2: evaluation of in vitro release profiling methodologies for controlled release respiratory aerosols. Eur J Pharm Biopharm. 2008;70:145–52.

    Article  PubMed  CAS  Google Scholar 

  9. Haghi M, Traini D, Bebawy M, Young PM. Deposition, diffusion and transport mechanism of dry powder microparticulate salbutamol, at the respiratory epithelia. Mol Pharm. 2012;9:1717–26.

    Article  PubMed  CAS  Google Scholar 

  10. Arora D, Shah KA, Halquist MS, Sakagami M. In vitro aqueous fluid-capacity-limited dissolution testing of respirable aerosol drug particles generated from inhaler products. Pharm Res. 2010;27:786–95.

    Article  PubMed  CAS  Google Scholar 

  11. Son YJ, Horng M, Copley M, McConville JT. Optimization of an in vitro dissolution test method for inhalation formulations. Dissolution Technol. 2010;17:6–13.

    CAS  Google Scholar 

  12. Davies NM, Feddah MR. A novel method for assessing dissolution of aerosol inhaler products. Int J Pharm. 2003;255:175–87.

    Article  PubMed  CAS  Google Scholar 

  13. Sakagami M, Arora Lakhani D. Understanding dissolution in the presence of competing cellular uptake and absorption in the airways. In: Dalby RN, Byron PR, Peart J, Suman JD, Farr SJ, Young PM, editors. Respiratory Drug Delivery. 2012, pp. 185–192.

  14. Mees J, Fulton C, Wilson S, Bramwell N, Lucius M, Cooper A. Development of dissolution methodology for dry powder inhalation aerosols. IPAC-RS Conference In 2011.

  15. Veldhuizen R, Nag K, Orgeig S, Possmayer F. The role of lipids in pulmonary surfactant. Biochim Biophys Acta Mol basis Dis. 1998;1408:90–108.

    Article  CAS  Google Scholar 

  16. Dokoumetzidis A, Macheras P. A century of dissolution research: from Noyes and Whitney to the Biopharmaceutics classification system. Int J Pharm. 2006;321:1–11.

    Article  PubMed  CAS  Google Scholar 

  17. Hsu W-L, Lin M-J, Hsu J-P. Dissolution of solid particle in liquids: a shrinking core model. World Acad Sci Eng Technol. 2009;53:913–8.

    Google Scholar 

  18. Wang J, Flanagan DR. General solution for diffusion-controlled dissolution of spherical particles. 1. Theory. J Pharm Sci. 1999;88:731–8.

    Article  PubMed  CAS  Google Scholar 

  19. Son YJ, McConville JT. Development of a standardized dissolution test method for inhaled pharmaceutical formulations. Int J Pharm. 2009;382:15–22.

    Article  PubMed  CAS  Google Scholar 

  20. Jensen B, Reiners M, Wolkenhauer M, Ritzheim P, May S, Schneider M, et al. Dissolution testing for inhaled products. Respiratory Drug Delivery, Europe In 2011, pp. 303–308.

  21. May S, Jensen B, Wolkenhauer M, Schneider M, Lehr CM. Impact of deposition and the presence of surfactants on in vitro dissolution of inhalation powders. Respiratory Drug Delivery Europe In 2013.

  22. Food and Drug Administration. Guidance for Industry; Dissolution testing of immediate release solid oral dosage forms. http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm070237.pdf online (1997).

  23. European Medicines Agency. Guideline on the investigation of bioequivalence. http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2010/01/WC500070039.pdf online (2008).

  24. Sertsou G. Analytical derivation of time required for dissolution of monodisperse drug particles. J Pharm Sci. 2004;93:1941–4.

    Article  PubMed  CAS  Google Scholar 

  25. Hayduk W, Laudie H. Prediction of diffusion coefficients for nonelectrolytes in dilute aqueous solutions. AIChe. 1974;20:611–5.

    Article  CAS  Google Scholar 

  26. Sheng JJ, Sirois PJ, Dressman JB, Amidon GL. Particle diffusional layer thickness in a USP dissolution apparatus II: a combined function of particle size and paddle speed. J Pharm Sci. 2008;97:4815–29.

    Article  PubMed  CAS  Google Scholar 

  27. Bisrat M, Nystrom C. Physicochemical aspects of drug release. VIII. The relation between particle size and surface specific dissolution rate in agitated suspensions. Int J Pharm. 1988;47:223–31.

    Article  CAS  Google Scholar 

  28. Lu ATK, Frisella ME, Johnson KC. Dissolution modeling: factors affecting the dissolution rates of polydisperse powders. Pharm Res. 1993;10:1308–14.

    Article  PubMed  CAS  Google Scholar 

  29. Hintz RJ, Johnson KC. The effect of particle size distribution on dissolution rate and oral absorption. Int J Pharm. 1989;51:9–17.

    Article  CAS  Google Scholar 

  30. Sugano K. Theoretical comparison of hydrodynamic diffusion layer models used for dissolution simulation in drug discovery and development. Int J Pharm. 2008;363:73–7.

    Article  PubMed  CAS  Google Scholar 

  31. Voigt R. Pharmazeutische Technologie. Stuttgart: Deutscher Apotheker Verlag; 2006.

    Google Scholar 

  32. Nichols SC. Calibration and mensuration issues for the standard and modified andersen cascade impactor. Pharmacopeial Forum. 2000;26:1466–7.

    Google Scholar 

  33. Okazaki A, Mano T, Sugano K. Theoretical dissolution model of poly-disperse drug particles in biorelevant media. J Pharm Sci. 2008;97:1843–52.

    Article  PubMed  CAS  Google Scholar 

  34. Davies CN. Particle-fluid interaction. J Aerosol Sci. 1979;10:477–513.

    Article  CAS  Google Scholar 

  35. http://www.guidechem.com/dictionary/de/51333-22-3.html. 2013.

  36. Sadler RC, Prime D, Burnell PK, Martin GP, Forbes B. Integrated in vitro experimental modelling of inhaled drug delivery: deposition, dissolution and absorption. J Drug Deliv Sci Technol. 2011;21:331–8.

    CAS  Google Scholar 

  37. Wauthoz N, Deleuze P, Saumet A, Duret C, Kiss R, Amighi K. Temozolomide-based dry powder formulations for lung tumor-related inhalation treatment. Pharm Res. 2011;28:762–75.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

Thanks to Dr. Holger Wagner, Dr. Peter Häbel and team (Boehringer Ingelheim) for calculating the van der Waals volumes of the substances and to Wolfgang Bootz (Boehringer Ingelheim) and Dr. Bernhard Meier for the SEM pictures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claus-Michael Lehr.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

(DOCX 64 kb)

Table S1

(DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

May, S., Jensen, B., Weiler, C. et al. Dissolution Testing of Powders for Inhalation: Influence of Particle Deposition and Modeling of Dissolution Profiles. Pharm Res 31, 3211–3224 (2014). https://doi.org/10.1007/s11095-014-1413-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-014-1413-4

KEY WORDS

Navigation