Skip to main content
Log in

Pulsatile Protein Release from Monodisperse Liquid-Core Microcapsules of Controllable Shell Thickness

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Pulsatile delivery of proteins, in which release occurs over a short time after a period of little or no release, is desirable for many applications. This paper investigates the effect of biodegradable polymer shell thickness on pulsatile protein release from biodegradable polymer microcapsules.

Methods

Using precision particle fabrication (PPF) technology, monodisperse microcapsules were fabricated encapsulating bovine serum albumin (BSA) in a liquid core surrounded by a drug-free poly(lactide-co-glycolide) (PLG) shell of uniform, controlled thickness from 14 to 19 μm.

Results

When using high molecular weight PLG (Mw 88 kDa), microparticles exhibited the desired core-shell structure with high BSA loading and encapsulation efficiency (55–65%). These particles exhibited very slow release of BSA for several weeks followed by rapid release of 80–90% of the encapsulated BSA within 7 days. Importantly, with increasing shell thickness the starting time of the pulsatile release could be controlled from 25 to 35 days.

Conclusions

Biodegradable polymer microcapsules with precisely controlled shell thickness provide pulsatile release with enhanced control of release profiles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Leader B, Baca QJ, Golan DE. Protein therapeutics: a summary and pharmacological classification. Nat Rev Drug Discov. 2008;7:21–39.

    Article  PubMed  CAS  Google Scholar 

  2. Aggarwal S. What’s fueling the biotech engine-2009-2010. Nat Biotechnol. 2010;28:1165–71.

    Article  PubMed  CAS  Google Scholar 

  3. Ye M, Kim S, Park K. Issues in long-term protein delivery using biodegradable microparticles. J Control Release. 2010;146:241–60.

    Article  PubMed  CAS  Google Scholar 

  4. Varde NK, Pack DW. Microspheres for controlled release drug delivery. Expert Opin Biol Ther. 2004;4:35–51.

    Article  PubMed  CAS  Google Scholar 

  5. Berkland C, Pollauf E, Raman C, Silverman R, Kim K, Pack DW. Macromolecule release from monodisperse plg microspheres: control of release rates and investigation of release mechanism. J Pharm Sci. 2007;96:1176–91.

    Article  PubMed  CAS  Google Scholar 

  6. Xia Y, Xu Q, Wang C-H, Pack DW. Protein encapsulation in and release from monodisperse double-wall polymer microspheres. J Pharm Sci. 2013;102:1601–9.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  7. Sato K, Takahashi S, Anzai J-I. Layer-by-layer thin films and microcapsules for biosensors and controlled release. Anal Sci. 2012;28:929–38.

    Article  PubMed  CAS  Google Scholar 

  8. Bysell H, Månsson R, Hansson P, Malmsten M. Microgels and microcapsules in peptide and protein drug delivery. Adv Drug Deliv Rev. 2011;63:1172–85.

    Article  PubMed  CAS  Google Scholar 

  9. Sawalha H, Schroën K, Boom R. Biodegradable polymeric microcapsules: preparation and properties. Chem Eng J. 2011;169:1–10.

    Article  CAS  Google Scholar 

  10. Rahman NA, Mathiowitz E. Localization of bovine serum albumin in double-walled microspheres. J Control Release. 2004;94:163–75.

    Article  PubMed  CAS  Google Scholar 

  11. Berkland C, Cox A, Kim KK, Pack DW. Three-month, zero-order piroxicam release from monodispersed double-walled microspheres of controlled shell thickness. J Biomed Mater Res. 2004;70A:576–84.

    Article  CAS  Google Scholar 

  12. Berkland C, Pollauf E, Pack DW, Kim K. Uniform double-walled polymer microspheres of controllable shell thickness. J Control Release. 2004;96:101–11.

    Article  PubMed  CAS  Google Scholar 

  13. Berkland C, Pollauf EJ, Varde NK, Pack DW, Kim KK. Monodisperse liquid-filled biodegradable microcapsules. Pharm Res. 2007;24:1007–13.

    Article  PubMed  CAS  Google Scholar 

  14. Xia Y, Ribeiro PF, Pack DW. Controlled protein release from monodisperse biodegradable double-wall microspheres of controllable shell thickness. J Control Release. 2013;172:707–14.

    Article  PubMed  CAS  Google Scholar 

  15. Xu Q, Xia Y, Wang C-H, Pack DW. Monodisperse double-walled microspheres loaded with chitosan-p53 nanoparticles and doxorubicin for combined gene therapy and chemotherapy. J Control Release. 2012;163:130–5.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Xu Q, Leong J, Chua QY, Chi YT, Chow PK-H, Pack DW, et al. Combined modality doxorubicin-based chemotherapy and chitosan-mediated p53 gene therapy using double-walled microspheres for treatment of human hepatocellular carcinoma. Biomaterials. 2013;34:5149–62.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Roy P, Shahiwala A. Multiparticulate formulation approach to pulsatile drug delivery: current perspectives. J Control Release. 2009;134:74–80.

    Article  PubMed  CAS  Google Scholar 

  18. Kikuchi A, Okano T. Pulsatile drug release control using hydrogels. Adv Drug Deliv Rev. 2002;54:53–77.

    Article  PubMed  CAS  Google Scholar 

  19. Bussemer T, Otto I, Bodmeier R. Pulsatile drug-delivery systems. Crit Rev Ther Drug Carrier Syst. 2001;18:433–58.

    Article  PubMed  CAS  Google Scholar 

  20. Richards Grayson AC, Choi IS, Tyler BM, Wang PP, Brem H, Cima MJ, et al. Multi-pulse drug delivery from a resorbable polymeric microchip device. Nat Mater. 2003;2:767–72.

    Article  PubMed  Google Scholar 

  21. Makino K, Mogi T, Ohtake N, Yoshida M, Ando S, Nakajima T, et al. Pulsatile drug release from poly (lactide-co-glycolide) microspheres: how does the composition of the polymer matrices affect the time interval between the initial burst and the pulsatile release of drugs? Colloids Surf B: Biointerfaces. 2000;19:173–9.

    Article  CAS  Google Scholar 

  22. Yuk S, Cho S, Lee H. Electric current-sensitive drug delivery systems using sodium alginate/polyacrylic acid composites. Pharm Res. 1992;9:955–7.

    Article  PubMed  CAS  Google Scholar 

  23. Edelman ER, Kost J, Bobeck H, Langer R. Regulation of drug release from polymer matrices by oscillating magnetic fields. J Biomed Mater Res. 1985;19:67–83.

    Article  PubMed  CAS  Google Scholar 

  24. Kost J, Leong K, Langer R. Ultrasound-enhanced polymer degradation and release of incorporated substances. Proc Natl Acad Sci U S A. 1989;86:7663–6.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. Siegel RA, Falamarzian M, Firestone BA, Moxley BC. Ph-controlled release from hydrophobic/polyelectrolyte copolymer hydrogels. J Control Release. 1988;8:179–82.

    Article  CAS  Google Scholar 

  26. Santini Jr JT, Cima MJ, Langer R. A controlled-release microchip. Nature. 1999;397:335–8.

    Article  PubMed  CAS  Google Scholar 

  27. Bussemer T, Bodmeier R. Formulation parameters affecting the performance of coated gelatin capsules with pulsatile release profiles. Int J Pharm. 2003;267:59–68.

    Article  PubMed  CAS  Google Scholar 

  28. Berkland C, Pollauf E, Varde N, Pack DW, Kim KK. Monodisperse liquid-filled biodegradable microcapsules. Pharm Res. 2007;24:1007–13.

    Article  PubMed  CAS  Google Scholar 

  29. Sanchez A, Gupta RK, Alonso MJ, Siber GR, Langer R. Pulsed controlled-release system for potential use in vaccine delivery. J Pharm Sci. 1996;85:547–52.

    Article  PubMed  CAS  Google Scholar 

  30. Youan BBC, Jackson TL, Dickens L, Hernandez C, Owusu-Ababio G. Protein release profiles and morphology of biodegradable microcapsules containing an oily core. J Control Release. 2001;76:313–26.

    Article  PubMed  CAS  Google Scholar 

  31. Berkland C, Kim K, Pack DW. Fabrication of plg microspheres with precisely controlled and monodisperse size distributions. J Control Release. 2001;73:59–74.

    Article  PubMed  CAS  Google Scholar 

  32. Fu K, Pack DW, Klibanov AM, Langer R. Visual evidence of acidic environment within degrading poly(lactic-co-glycolic acid) (plga) microspheres. Pharm Res. 2000;17:100–6.

    Article  PubMed  CAS  Google Scholar 

  33. Harkins WD, editor. The physical chemistry of surface films. New York: Reinhold; 1952.

    Google Scholar 

  34. Torza S, Mason SG. Three-phase interactions in shear and electrical fields. J Colloids Int Sci. 1970;33:67–83.

    Article  CAS  Google Scholar 

  35. van Krevelen DW, editor. Properties of polymers: Their estimation and correlation with chemical structure. Amsterdam: Elsevier Scientific Publishing Company; 1976.

    Google Scholar 

  36. Anastasiadis SH, Gancarz I, Koberstein JT. Interfacial tension of immiscible polymer blends: temperature and molecular weight dependence. Macromolecules. 1988;21:2980–7.

    Article  CAS  Google Scholar 

  37. Schwendeman SP. Recent advances in the stabilization of proteins encapsulated in injectable plga delivery systems. Crit Rev Ther Drug Carrier Syst. 2002;19:26.

    Article  Google Scholar 

  38. Emami J, Hamishehkar H, Najafabadi AR, Gilani K, Minaiyan M, Mahdavi H, et al. A novel approach to prepare insulin-loaded poly(lactic-co-glycolic acid) microcapsules and the protein stability study. J Pharm Sci. 2009;98:1712–31.

    Article  PubMed  CAS  Google Scholar 

  39. Houchin ML, Topp EM. Chemical degradation of peptides and proteins in plga: a review of reactions and mechanisms. J Pharm Sci. 2008;97:2395–404.

    Article  PubMed  CAS  Google Scholar 

  40. Fredenberg S, Wahlgren M, Reslow M, Axelsson A. The mechanisms of drug release in poly(lactic-co-glycolic acid)-based drug delivery systems—a review. Int J Pharm. 2011;415:34–52.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institute of Health Grant EB005181 and GM085222. Scanning Electron Microscopy took place in Material Research Lab at University of Illinois at Urbana-Champaign. Confocal microscopy measurements took place in Beckman Institute, imaging technology group at University of Illinois at Urbana-Champaign. DSC was performed in Microanalysis Laboratory, School of Chemical Sciences, University of Illinois at Urbana-Champaign.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel W. Pack.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 1101 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, Y., Pack, D.W. Pulsatile Protein Release from Monodisperse Liquid-Core Microcapsules of Controllable Shell Thickness. Pharm Res 31, 3201–3210 (2014). https://doi.org/10.1007/s11095-014-1412-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-014-1412-5

Key Words

Navigation